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Abstract 
This paper develops a new exploratory method for analyzing the relations 

among distributions of spatial objects. Existing methods usually focus on the 
distribution of one or two types of spatial objects. This paper, on the other hand, deals 
with the relations among more than two distributions of spatial objects. In addition, the 
method is applicable independent of the type of spatial objects. These advantages assure 
a wide applicability and flexibility of the method. Analysis starts with the evaluation of 
local spatial relations among objects. This paper then develops a computational 
algorithm for clustering distributions based on a specific spatial relationship such as 
spatial proximity. The result is visualized by a graph-based representation and evaluated 
by numerical measures. The method is applied to the analysis of the distributions of 
commercial facilities in Chiba City, Japan. Technical soundness of the method is 
discussed as well as empirical findings. 
  



- 1 - 
 

1. Introduction
 Geography deals with the distribution of a wide variety of geographical entities 
and phenomena. Geographical information science represents them as spatial objects 
such as points, lines, polygons, and surfaces and assigns their attributes as nominal, 
categorical, and numerical variables. Geographers analyze their spatial distribution, the 
relationship between the distribution of objects and their attributes, and so forth. 
 The point is one of the most basic and fundamental spatial objects used in 
geographical information science. Statistical analysis of point distributions is often 
called point pattern analysis and numerous methods have been developed in the 
literature. They include quadrat method (Goodall, 1952; Greig-Smith, 1952; Pielou, 
1969), nearest neighbor distance (Skellam, 1952; Clark and Evans, 1954; Diggle, 2003), 
K-function (Ripley, 1976, 1977, 1981), and kernel density estimation (Rosenblatt, 1956; 
Parzen, 1962; Silverman, 1986). 
 The line also plays a critical role in geographical information science. Lines 
represent water stream, gas pipelines, traffic, electric, and information networks. 
Analytical methods based on graph theory permit us to evaluate the properties of 
networks including their size, connectivity and density (Shimble, 1953; Haggett and 
Chorley, 1969). These methods are recently applied to the analysis of social and web 
networks (Wasserman and Faust, 1994; Carrington et al., 2005; Knoke and Yang, 2008; 
Abraham et al., 2009). 
 The above methods treat the distribution of a single type of spatial objects. In 
the real world, however, a wide variety of spatial objects exists and affect with each 
other. It is clearly indispensable to analyze the relations among more than a single 
distribution of spatial objects to understand the whole picture of the real world. 

In point pattern analysis, several methods are available to examine the 
relationship between the distributions of two types of points. They include nearest 
neighbor contingency table (Pielou, 1961; Dixon, 1994), bivariate J-function (van 
Lieshout and Baddeley, 1999), cross K-function (Ripley, 1981), and nearest neighbor 
measures (Lee, 1979; Okabe and Miki, 1984). 
 Concerning the relationship between points and other types of spatial objects, a 
few methods have been proposed in the literature. Okabe and Fujii (1984) and Okabe et 
al. (1988) propose a statistical method for analyzing the relationship between points and 
a network and that between points and polygons, respectively. Sadahiro (1999) 
discusses the relationship between points and a surface. 
 Unfortunately, the type and the number of distributions are quite limited in 
exploratory spatial analysis. There are few methods that treat spatial objects other than 



- 2 - 
 

points and lines. Given more than two distributions of spatial objects, we have to 
evaluate every pair of two distributions separately. Since each method is tailored for a 
specific type of spatial objects, numerous methods have to be developed to treat a wide 
variety of spatial objects. 
 To resolve the problem, this paper proposes a new exploratory method for 
analyzing the relations among distributions of spatial objects. It is a generalized method 
based on the those proposed in Sadahiro (2010, 2011, 2012), Sadahiro and Kobayashi 
(2012), and Sadahiro et al. (2012), each of which focuses on a specific type of spatial 
objects: 1) point distributions on a discrete space, 2) spatial tessellations, 3) a set of 
single polygons, 4) trajectories on a network, and 5) spatially distributed time series 
data. On the basis of these papers, this paper proposes a general method that is 
applicable independent of the type of spatial objects. Its applications include point 
distributions, polygons distributions, and trajectories on a continuous space. 

Section 2 proposes a general method of analyzing the relations among the 
distributions of spatial objects. Section 3 describes the way of applying the method to 
several specific types of spatial objects. Section 4 applies the method to the analysis of 
the distributions of commercial facilities in Chiba City, Japan. Section 5 summarizes the 
conclusions with a discussion. 
 
2. Method 

This paper proposes a general method for analyzing the relations among the 
distributions of spatial objects. The method does not assume a specific type of spatial 
objects. However, the description below goes with a concrete illustration of the analysis 
of point distributions on a continuous space. This aims to avoid an abstract explanation 
of the method that is not easily accessible to readers. We choose point distributions on a 
continuous space because they are a more general case than those discussed in earlier 
papers. Point distributions are suitable for explaining a broad range of applications. 

The method primarily consists of four steps: 
 
1) Preprocessing 
2) Clustering of distributions 
3) Visualization of the relations among distributions 
4) Quantitative evaluation 
 

The following sections describes each step successively. 
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2.1 Preprocessing 
Analysis starts with the definition of the minimal set of elements by which all 

the distributions are described. This paper calls the elements parts. Parts are the set of 
largest elements that do not need further division into smaller pieces to compose all the 
distributions. Any distribution can be represented as a set of parts. 

There are at least two ways of defining parts. If spatial objects do not overlap 
with each other, parts are given by the union set of all the objects. In point distributions, 
for instance, each point in the distributions is a part. Every distribution can be 
represented as a set of points. If spatial objects overlap with each other, we make 
intersection of all the objects to obtain fragmented pieces each of which is defined as a 
part. Sadahiro et al. (2012) adopts this definition in the analysis of trajectories on a 
network where parts are defined as a set of links of the network. 

This paper calls a distribution of spatial objects a body, because our method 
often treats the relations among distributions each of which consists of a single object 
(Sadahiro, 2012; Sadahiro and Kobayashi, 2012; Sadahiro et al., 2012). Let B={B1, 
B2, ..., BM} be the set of bodies. Body Bi is represented as a set of parts {Pi1, Pi2, ..., 
Pimi}. The number of elements and the ith element in set Q are denoted by #(Q) and e(Q, 
i), respectively. 

We then evaluate the spatial relations among parts contained in different bodies. 
To this end, we define neighborhoods of parts and examine the smaller regions obtained 
by their intersection. The definition of neighborhood depends on the type of spatial 
objects and the objective of analysis. A natural definition for point distributions is the 
buffer region of points as shown in Figure 1a. 

Every region generated by the intersection of all the neighborhoods is assigned 
a spatial tag (Figure 1b). A set of tags is denoted by Τ={T1, T2, …,TK}. Tags provide a 
means of evaluating spatial relations among parts and bodies. If two parts share the 
same tag, the parts are considered to be spatially proximal. Two bodies are spatially 
similar if their parts share many tags. Every tag has its own size denoted by s(Ti). When 
tags are defined on a two-dimensional space, their size is the area of their assigned 
regions. The size of a tag defined on a one-dimensional space is the length of its 
assigned line segment. 

If parts are generated by intersection of overlapping objects, tags can be 
defined without considering the neighborhoods of parts. Every part has its own tag and 
only parts in different bodies that share the same tag are regarded as spatially proximal. 

Tags relate parts in different bodies with each other. In Figure 1, for instance, 
tag T8 relates parts P12, P21, and P32, and T6 relates P12 and P21. Tags also relate different 
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bodies through parts. Tag T8 relates bodies B1, B2, and B3 through parts P12, P21, and P32. 
Tag T6 relates bodies B1 and B2 through parts P12 and P21. 

Tags, parts, and bodies are related with each other. This paper calls this 
relationship assignment. In Figure 1, tag T8 is assigned to points P12, P21, and P32, 
bodies B1, B2, and B3, while P12, P21, P32, B1, B2, and B3 are assigned to T8. Every body 
and part can be represented by a set of assigned tags, while every tag can be represented 
as a set of assigned parts and bodies. Part P12 and body B2 can be represented as {T5, T6, 
T8, T9} and {P21, P22, P23, P24}={{T5, T6, T8, T9}, {T14, T15}, {T16, T17}, {T21, T22, T23, 
T24, T25, T26, T27}}, respectively. The set of bodies represented by the sets of tags is 
denoted by BT. 
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Figure 1. Point distributions, neighborhoods, and tags. Different symbols 
indicate different distributions. (a) Point distributions and their neighborhoods. 

(b) Tags assigned to individual regions. 
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2.2 Clustering of distributions 

Having defined parts and tags, we cluster distributions of spatial objects in a 
specific relation. This section focuses on the spatial proximity among distributions 
because it has been drawn much attention of geographers as shown by numerous 
applications in point pattern analysis mentioned earlier. Clustering based on other 
relations will be briefly described later. 

We cluster distributions whose elements are spatially proximal with each other 
at a local scale. Suppose, for instance, the distributions of commercial facilities. 
Supermarkets, convenience stores, fast-food restaurants, and drug stores display 
different distributions at a global scale. However, their distributions are often very 
similar with each other at a local scale. We often find shopping malls that contain all the 
four types of commercial facilities. Our method clusters the distributions of these 
facilities since they are similar at a local scale. 

The above shopping malls are called centers denoted by C={C1, C2, …,CN}. 
They are formally defined as the sets of tags each of which are shared by many parts of 
different bodies. Each center consists of a set of tags assigned to the same set of parts. A 
body is said to be assigned to Ci if all the tags of Ci are assigned to parts in the body. Let 
Γi be a set of bodies assigned to center Ci. The set of body sets is denoted by Γ={Γ1, 
Γ2, ..., ΓN}. 

The following is a computational algorithm that detect centers and cluster 
distributions: 

 
Algorithm CB (Center detection and Body clustering) 
 
Input: 

Set of bodies represented by both Β and BT 
Set of tags Τ 
Conditions {ϑS, ϑA1, ϑA2} 
Parameters {α, β} 
 

Output: 
Set of tags representing centers C and their related tags C’ 
Sets of bodies assigned to centers Γ and related bodies Γ’ 
 

Algorithm: 
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1. C=Γ∈Γ=Ci∈C=∅. j=0. 
2. Repeat the steps 3-26 while #(Ψ)≥α at step 6. 
3.  Θ=Ψ=Ψ’=∅. k=1. 
4.  Choose the set of tags in Τ satisfying ϑA1. 
5.  Add the tags to Θ. 
6.  Add the bodies in B assigned to the chosen tag to Ψ. 
7.  Repeat the steps 8-21 while #(Ψ)>1. 
8.   If s(Θ)≥β then 
9.    If Cj≠∅ then 
10.     Move the bodies from Ψ to Ψ’ that do not contain all the elements of Θ. 
11.    If Cj=∅ and #(Ψ)≥α then 
12.     j=j+1. 
13.     Cj=Θ. 
14.     Γj=Ψ. 
15.    If Cj=∅ and #(Ψ)<α then 
16.     Move the bodies from Ψ to Ψ’ that do not contain all the elements of Θ. 
17.   If s(Θ)<β then 
18.    Move the bodies from Ψ to Ψ’ that do not contain all the elements of Θ. 
19.   Choose the set of tags in Τ\Θ satisfying ϑS and ϑA2. 
20.   Add the tags to Θ. 
21.   Move the bodies from Ψ to Ψ’ that are not assigned to all the elements of Θ. 
22.  If Cj≠∅ then 
23.   Cj’=Θ. 
24.   Γj’=Ψ’. 
25.   Remove the tags of parts of Γj containing Cj from ΒT. 
26.  If Cj=∅ then k=k+1. 
27.  Return C, C’, Γ, and Γ’. 
 

Algorithm CB detects centers represented by C and clusters bodies into similar 
groups based on C represented by Γ. Since it is designed as a general algorithm 
applicable independent of the type of spatial objects, conditions ϑS, ϑA1, and ϑA2 and 
parameters α and β are not specified. They have to be defined in each application as 
well as tags, parts, and bodies. 

Condition ϑS is the spatial requirement on tags in C while conditions ϑA1 and 
ϑA2 indicate requirements on their attributes. The former depends on whether or not 
each center has to be in a specific spatial form. Analysis of point distributions does not 
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usually impose this condition. When centers have to be spatially clustered, we define ϑS 
as a tag adjacent to those in Θ. 

Condition ϑA1 is given to choose a tag that best represents many bodies. We 
usually define ϑA1 as the largest tag among those assigned to the kth most bodies in ΒT. 
Modifying slightly condition ϑA1, we obtain Condition ϑA2: the largest set of tags in ΒT 
that are assigned to the most bodies in Ψ. 

Parameters α and β indicate the requirements for centers. The former is the 
minimum number of bodies assigned to a center while the latter is the minimum size of 
a center. Large α and β yield large centers assigned to many bodies. Though such 
centers are useful in analysis, large parameter values are restrictive conditions so that 
Algorithm CB may detect only a few centers. In practice, we should start with small 
values, say, α=0.001×M and β=0.0001×s(T), and gradually increase them until a 
reasonable number of centers are obtained. 

Figure 2 shows the process of Algorithm CB applied to the point distributions 
shown in Figure 1. Let us first suppose the case where α=3 and β=β1, the latter of which 
is indicated by the area of the dotted circle in Figure 2a. Algorithm CB chooses tag T27 
at step 4 because it is the only tag assigned to four bodies. The sets Θ and Ψ become 
{T27} and {B1, B2, B3, B4}, respectively, the former of which is indicated by the bold line 
in Figure 2a. Since s(T27)<β1, Algorithm CB proceeds to step 17 and then 19 to choose 
{T8, T25} because s(T8)+s(T25) is largest among the sets of tags assigned to three bodies 
in Ψ. The sets Θ and Ψ then become {{T27}, {T8, T25}} and {B1, B2, B3}, respectively. 
The set {T8, T25} is indicated by thin lines in Figure 2a. Algorithm CB returns to step 8. 
Since s(T27)+s(T8)+s(T25)>β, the tag set Θ={{T27}, {T8, T25}} is substituted to center C1 
at step 13. This center is indicated by dark gray shades in Figure 2b. 

We then turn to the case where α=3 and β=β2. Since s(T27)+s(T8)+s(T25)<β, 
Algorithm CB proceeds to step 17. It adds tags {T6, T14, T17, T24} to Θ. Though s(Θ)>β2, 
set Θ is not a center because #(Ψ)<α. Algorithm CB does not detect any center because 
the requirements for centers are too restrictive. 

If α=2, Algorithm CB detects the center represented by {{T27}, {T8, T25}, {T6, 
T14, T17, T22}} indicated by light gray shades in Figure 2b. Two bodies {B1, B2} are 
assigned to the center. 
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Figure 2. Center detection and body clustering in point distributions. Parameter β is 
indicated as the area of the dotted circles. (a) Tags chosen by Algorithm CB when α=3. 
Bold and thin lines indicate the first and second set of tags, respectively. (b) Centers 
detected by Algorithm CB. Dark and light gray shades indicate the centers when α=2 
and α=3, respectively. 
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Algorithm CB is a generalized algorithm of Algorithm TC proposed by 

Sadahiro and Kobayashi (2012) that was originally developed by Kharrat et al. (2008). 
Though existing algorithms focus on a specific type of spatial objects under limited 
circumstances, Algorithm CB does not depend on the type of spatial objects. 

Though only a single center is detected in Figure 2, many centers are usually 
detected when a number of distributions are analyzed. Each body can be assigned to 
more than one center, and centers sharing the same tags spatially overlap with each 
other. 

Algorithm CB generates two ordered sets of tags and bodies C’ and Γ’ for 
clustering bodies. In Figure 2, C’ ={{T27}, {T8, T25}, {T6, T14, T17, T22}, {T1, T3, T5, T9, 
T12, T13, T18, T26, T29, T31, T32, T33}} and Γ’={B4, B3, B2, B1}. The tag sets are arranged in 
the order of addition while the bodies are arranged in the order of removal. Since the 
orders reflect that of similarity of elements, C’ and Γ’ provide a means of classify tags 
and bodies. In Γ’={B4, B3, B2, B1}, for instance, bodies {B3, B2, B1} are more similar 
with each other than B4. Consequently, we may classify the bodies as {{B4}, {B3, B2, 
B1}}, {{B4}, {B3}, {B2, B1}}, or {{B4}, {B3}, {B2}, {B1}}. Classifications such as {{B4, 
B2}, {B3, B1}} and {{B4, B1}, {B3, B2}} are not permissible because they are 
inconsistent with the order of bodies in Γ’. 

This classification scheme permits each body or tag contained in more than one 
group when multiple centers are detected. To avoid this, we simply remove all the tags 
of Γj in ΒT at step 25. This enables the classification of all the bodies and tags without 
overlap. 

Algorithm CB adds tags to Θ while removes bodies from Ψ under given 
conditions. Tags and bodies are interchangeable because they are both represented as the 
sets of the others. Exchanging tags and bodies, we obtain a dual algorithm of Algorithm 
CB: 

 
Algorithm CT (Center detection and Tag clustering) 
 
Input: 

Set of bodies represented by both Β and BT 
Set of tags T 
Conditions {ϑA1, ϑA2} 
Parameters {α, β} 
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Output: 
Set of tags representing centers C and their related tags C’ 
Sets of bodies assigned to centers Γ and related bodies Γ’ 
 

Algorithm: 
1. C=Γ∈Γ=Ci∈C=∅. j=0. 
2. Repeat the steps 3-26 while #(Ψ)≥α at step 6. 
3.  Θ=Θ’=Ψ=∅. k=1. 
4.  Choose the set of bodies in Β satisfying ϑA1. 
5.  Add the bodies to Ψ. 
6.  Add the tags in T assigned to the chosen body to Θ. 
7.  Repeat the steps 8-21 while #(Θ)>1. 
8.   If s(Ψ)≥β then 
9.    If Cj≠∅ then 
10.     Move the tags from Θ to Θ’ that do not contain all the elements of Ψ. 
11.    If Cj=∅ and #(Θ)≥α then 
12.     j=j+1. 
13.     Cj=Θ. 
14.     Γj=Ψ. 
15.    If Cj=∅ and #(Θ)<α then 
16.     Move the tags from Θ to Θ’ that do not contain all the elements of Ψ. 
17.   If s(Ψ)<β then 
18.    Move the tags from Θ to Θ’ that do not contain all the elements of Ψ. 
19.   Choose the set of bodies in Β\Ψ satisfying ϑA2. 
20.   Add the body to Ψ. 
21.   Move the tags from Θ to Θ’ that are not assigned to all the elements of Ψ. 
22.  If Cj≠∅ then 
23.   Cj’=Θ. 
24.   Γj’=Ψ’. 
25.   Remove the tags of parts of Γj containing Cj from ΒT. 
26.  If Cj=∅ then k=k+1. 
27.  Return C, C’, Γ, and Γ’. 
 
Conditions CT 

ϑA1: Largest among those assigned to the kth most tags in ΒT 
ϑA2: Largest among those assigned to the most tags in ΒT 
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The size of a body is the sum of the size of tags assigned to the body. 

Algorithm CT is a kind of reverse process of Algorithm CB, that is, it adds bodies to Ψ 
while removes tags from Θ. Though both algorithms cluster bodies and tags, they 
usually generate different results because Algorithm CB focuses on the coverage of 
bodies represented by #(Ψ) while Algorithm CT focuses on that of tags represented by 
#(Θ). Another difference is that Algorithm CB can consider spatial condition at step 19. 
Algorithm CT does not impose spatial conditions on centers. 
 
2.3 Visualization of the relations among distributions 

We then visualize the result of the clustering of distributions. One method is a 
map representation such as shown in Figure 3. Figure 3a and Figure 3b show the parts 
and bodies assigned to the center, respectively. Comparing the two figures, we notice 
that some parts such as P11, P23, and P31 are assigned to the center indirectly through the 
tags of the same bodies assigned to the center, say, P12, P21, and P32. 
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Figure 3. Tags and bodies assigned to the center detected by Algorithm CB 
when α=2 and β=β1. (a) Tags, (b) bodies. 
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Figure 3, unfortunately, does not clearly present the relations among tags, 

bodies, and centers. To complement this representation, this paper proposes a 
graph-based representation called topology diagram. It has been originally developed in 
Sadahiro (2010, 2011, 2012), Sadahiro and Kobayashi (2012), and Sadahiro et al. 
(2012). The power set of tags T and Boolean operations {∩, ∪} form a lattice 
(Anderson, 2002; Pemmaraju and Skiena, 2003), where the least and greatest elements 
are ∅ and the union set of all the tags. A lattice is a poset (partially ordered set), and 
consequently, visualized by Hasse diagram (Birkhoff, 1979; Davey and Priestley, 2002). 
Topology diagram is a modified subset of Hasse diagram that represents the topological 
relations among spatial objects. Nodes indicate tags, bodies, and centers, while edges 
indicate their topological relations. Parts are represented implicitly by their composing 
tags. The vertical axis indicates the size of spatial objects. 

Topology diagram is not uniquely defined. One method to create a topology 
diagram is to trace the entire process of detecting a single center in Algorithm CB. 
Addition of tags to Θ and removal of bodies from Ψ can be represented as a graph 
whose nodes indicate a center and its related bodies and tags. 

Figure 4 shows the topology diagram representing the process of detecting the 
center in Figure 1 when α=2.  Bold lines represent the growth of Θ. Algorithm CB adds 
tag sets {T8, T25}, {T6, T14, T17, T22}, {T1, T3, T5, T9, T12, T13, T18, T26, T29, T31, T32, T33} 
to Θ while removes bodies B4, B3, and B2 from Ψ. The former process is represented as 
a tree indicated by bold and thin solid lines while the latter is a tree consisting of bold 
solid and dotted lines in Figure 4. 
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Figure 4. Topology diagram indicating the process of detecting a center in 

Algorithm CB. Bold and thin solid lines indicate the addition of tags to Θ. Bold 
solid lines and dotted lines indicate the removal of bodies from Ψ. Edges E1-E3 

represent the growth of Θ. 
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obtain groups of bodies and tags. In Figure 4, for instance, we cut E2 to obtain two sets 
of bodies {B1, B2}, {B3, B4} and two sets of tags {T27, {T8, T25}}, {{T6, T14, T17, T22}, 
{T1, T3, T5, T9, T12, T13, T18, T26, T29, T31, T32, T33}}. Cutting E2 and E3, we obtain three 
sets of bodies. Topology diagram inherently prohibits classifications inconsistent with 
the order of bodies in Γ’ such as {{B4, B2}, {B3, B1}} and {{B4, B1}, {B3, B2}}. 

Topology diagram can also visualize the relations among multiple centers. To 
generate a topology diagram for multiple centers, we employ Algorithm CB by 
regarding centers as bodies. Tracing the entire process of Algorithm CB, we obtain a 
topology diagram that indicates the topological relations among centers. 
 
2.4 Quantitative evaluation 

Algorithm CB yields the sets of centers and bodies. The result is informative 
and useful when many centers are detected and many bodies are clustered into groups. 
To evaluate the result, this section proposes quantitative measures. 

A basic measure is N, the number of centers detected by Algorithm CB. In 
addition, the ratios of the bodies and tags assigned to centers are also useful: 
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The size of centers is also a critical measure of evaluating the effectiveness of 

analysis. Its standardized form is defined by 
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The above measures reflect the similarity among the distributions of spatial 

objects. A high similarity permits Algorithm CB to detect large and many centers, and 
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consequently, yields large values. Measures become small when a wide variety exists 
among the distribution of spatial objects. 

Measures can also be defined for individual centers. A center represents its 
assigned bodies and it is more representative and informative if it is large and assigned 
many bodies. The representativeness of a center can be evaluated by its size and the 
ratios of assigned bodies and tags: 
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  (6) 
These measures are all ratio variables ranging from 0 to 1. Large values indicate the 
high representativeness of Ci. 
 
2.5 Discretization 

Intersection of spatial objects in preprocessing often generates numerous parts 
and tags (Sadahiro, 1999). Since the computing time of Algorithm CB heavily depends 
on the number of parts and tags, calculation may not terminate within a reasonable time. 

A practical solution to this problem is to discretize the space on which spatial 
objects are distributed into small units. When the space is two-dimensional, a square 
lattice is a reasonable solution where cells serve as basic units in discretization. Parts, 
neighborhoods, and bodies are approximated by sets of cells and tags are assigned to the 
cells. If the space is one-dimensional such as a network space, we can use edges as basic 
units in discretization (Sadahiro et al., 2012). 

Computational complexity of Algorithm CB after discretization is O(Mm), 
where M and m are the numbers of bodies and basic units in discretization, respectively. 
Since it is a linear function of M and m, computation time is practically acceptable. 

A fine discretization sounds desirable because it provides a good 
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approximation of spatial objects. However, a high resolution is not always effective 
because it often generates many small centers that are not significant in analysis. 
Considering the initial value of β mentioned earlier, this paper recommends to set m 
from ten thousands to a million. Sadahiro and Kobayashi (2012) reports that lattices of 
resolution 200×200 to 1000×1000 yielded almost similar results. 

 
2.6 Clustering of distributions based on relations other than spatial proximity 

As mentioned in Section 2.2, distributions can be clustered based on not only 
spatial proximity but also other relations. This section briefly illustrates the clustering of 
distributions based on other relations, that is, complete, exclusive, and complementary 
relations discussed in Sadahiro (2010). 

A set of bodies are complete if every tag is assigned to at least one body in the 
set. Bodies are exclusive if no tag is assigned to more than one body in the set. 
Complete and exclusive set of bodies are complementary. A set of bodies in a specific 
relation are denoted by Gi, and their set is denoted by Λ={G1, G2, …,GN}. 

The three relations can be handled with in the same algorithm only by using 
different conditions in choosing bodies. 

 
Algorithm BC (Body Clustering) 
 
Input: 

Set of bodies Β 
Set of tags T 
Conditions {ϑR, ϑS, ϑA1, ϑA2} 
Parameters {K, γ, µ} 
 

Output: 
Sets of bodies Λ 
 

Algorithm: 
1. Λ=Gi∈Λ=∅. i=0. k=1 
2. Repeat the steps 3-12 while k≤K. 
3.  Θ=Ψ=∅. 
4.  Add Bk to Ψ. 
5.  Add the tags composing Bk to Θ. 
6.  Repeat the steps 7-9 until ϑR is satisfied. 
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7.   Choose the body in B satisfying ϑS and ϑA1. 
8.   Add the body to Ψ. 
9.   Add the tags composing the body to Θ. 
10.  If ϑA2 is satisfied then 
11.   i=i+1. 
12.   Gi=Ψ. 
12.  k=k+1. 
13.  Return Λ. 
 
Conditions BCC 

ϑR: #(Ψ)=M 
ϑA1: Largest among those assigned to the most tags in Τ\Θ 
ϑA2: #(Ψ)<γ 
 

Conditions BCE 
ϑR: No body can be further added to Ψ without overlap of tags in Θ 
ϑA1: Largest among those assigned to the most tags in Τ\Θ without overlap of tags 

in Θ 
ϑA2: #(Ψ)<γ and µ<s(Θ) 
 

Conditions BCC and BCE are used for detecting sets of complete and exclusive 
bodies, respectively. We can obtain complementary bodies by applying both conditions 
simultaneously. Spatial condition ϑS depends on the type of spatial objects. Sadahiro 
(2010) uses the Delaunay triangulation generated from all the points and chooses points 
adjacent on the network. 

Parameters K, γ, and µ give the number of sets of bodies, the maximum number 
of bodies in a set, and the minimum size of a set, respectively. Parameter µ is necessary 
only for detecting sets of exclusive bodies. Exchanging bodies and tags in Algorithm 
BC, we can also detect complete, exclusive, and complementary tags (Sadahiro, 2010). 
 
2.7 Formal concept analysis 

The power set of tags T and Boolean operations {∩, ∪} form a lattice as 
mentioned earlier. This enables us to analyze the relations among tags, bodies, and 
centers by using formal concept analysis (Ganter et al., 2005; Kwuida and Sertkaya, 
2010). Once we perform preprocessing, we can employ analytical methods developed in 
formal concept analysis with extensions and modifications. 
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For instance, computational algorithms are available to generate a concept 
lattice that visualizes the relations among objects and attributes. They are useful for 
efficiently visualizing the relations among tags, centers, and bodies. Methods for 
classifying objects and attributes have also been developed in the literature (Arévalo et 
al., 2009; Janowitz, 2010). We can extend them to classify bodies and tags. 
 
3. Distributions of spatial objects other than point distributions 

The method proposed in the previous section does not depend on the type of 
spatial objects. Its applications require the specification of parts, neighborhoods, and 
tags, and the definition of conditions and parameters in Algorithm BC. This section 
illustrates several applications discussed in earlier papers (Sadahiro, 2010, 2011, 2012, 
Sadahiro and Kobayashi, 2012, and Sadahiro et al., 2012). 

 
3.1 A set of single polygons 

Sadahiro (2012) analyzes a set of single polygons where each body is defined 
as a single polygon. If polygons overlap with each other, we make intersection of all the 
polygons to obtain smaller fragments as parts. If some polygons do not overlap, we may 
consider buffer regions of polygons as neighborhoods and make their intersections to 
define parts and tags. 

Definition of ϑS depends on whether or not each center needs to be spatially 
connected. To obtain connected centers, we define ϑS as a tag adjacent to those in Θ. If 
we permit disconnected centers, this condition is not necessary. 
 
3.2 Single paths on a network 

Sadahiro et al. (2012) analyzes paths on a network space on which each body is 
defined as a single path. When paths overlap with each other, we make intersection of 
all the paths to obtain parts defined by sets of edges. If some paths do not overlap, we 
may consider their neighborhoods on the network to define parts and tags. Spatial 
condition ϑS can be represented as spatial adjacency on the network. 
 
3.3 Time series data 

Sadahiro and Kobayashi (2012) applies the method to the analysis of spatially 
distributed time series data. The paper treats graphs representing the data as curved lines 
on a two-dimensional space. The treatment of two dimensions, however, is different 
because the horizontal axis represents time while the vertical axis indicates attribute 
value. 
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Neighborhoods are buffer regions of the graphs extended only in the vertical 
direction. This definition is different from that used in GIS since the latter is isotropic 
with respect to generators. A body is the neighborhood of a time series graph. 
Overlaying neighborhoods, we obtain small polygons in each of which a tag is defined. 
A body is split into parts by vertical lines at the earliest and latest times of every 
polygon composing the body. The size of a tag is its length measured in the horizontal 
direction. 

Condition ϑS is given by the spatial adjacency of polygons assigned to tags. 
Condition ϑA1 is defined similarly as that for polygons and paths. Condition ϑA2, on the 
other hand, is defined as the largest tag outside the time period of Θ among those 
assigned to the kth most bodies in ΒT. This aims to detect centers long enough in the 
horizontal rather than vertical direction. 

 
3.4 Point distributions on a discrete space 

Section 2 describes a method of analyzing point distributions on a continuous 
space. Since discrete space is a special case of continuous ones, the method is applicable 
as it is to the analysis of point distributions on a discrete space. 

However, when points can be distributed only on a limited number of locations, 
points may overlap with each other. In such a case, we can define parts as individual 
locations without considering neighborhoods (Sadahiro, 2010). In this case, condition 
ϑS is not naturally given by spatial proximity. We have to define explicitly a spatial 
structure among locations such as by using a Delaunay triangulation. 
 
3.5 Polygon distributions 

When polygons overlap with each other, the method discussed in Section 3.1 is 
directly applicable. If polygons do not overlap, we define neighborhoods and make their 
intersection to obtain parts. Though condition ϑS is not imposed in usual, we can define 
it as a tag adjacent to those in Θ if each center has to be spatially connected. 

 
3.6 Spatial tessellations 

Since spatial tessellations are a special case of polygon distributions, the 
method proposed in the previous section is applicable as it is. However, as seen in 
Sadahiro (2011), consideration of the special properties of spatial tessellations permits 
us to find a wider variety of relations among tessellations, especially when they are 
defined in the same region. 

A difference in Sadahiro (2011) lies in the definition of the relations among 
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tessellations. Given two tessellations, Sadahiro (2011) considers the topological relation 
between every pair of regions each of which is in a different tessellation. Two 
tessellations are hierarchical if every region of one tessellation is fully contained in a 
single region of the other. We can adopt this definition in Algorithm CT with a slight 
modification. 

The definition of topology diagram is also different. In Sadahiro (2011), the 
vertical axis of the diagram indicates the granularity of tessellations. The granularity of 
a tessellation Ω is defined by 
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where ωi is the ith region of Ω and a(ωi) is its area. Nodes indicate spatial tessellations. 
Two nodes are connected by an edge if the tessellations are hierarchical. This 
representation is useful if a focus is on the hierarchical relation among spatial 
tessellations. 
 
4. Empirical application 

To validate the method proposed in the previous section, this section applies it 
to the analysis of the distributions of commercial facilities in Chiba City, Japan. Chiba 
is located 30 kilometers away from the east of Tokyo. We generated spatial data of 
commercial facilities by geocoding of their addresses in NTT telephone directory. Chiba 
has 16,311 commercial facilities of 235 categories. 

Figure 5 shows the distribution of commercial facilities in Chiba. Downtown of 
Chiba is located in the southeast of Chiba station indicated by the largest cluster of 
darker cells. The northern and western parts of Chiba serve as residential areas for 
people working in Tokyo. The population density is higher in these areas. The southern 
and eastern parts are residential areas for people working in the downtown of Chiba. 
Commercial facilities are concentrated mainly around railway stations. Chiba station 
has the largest cluster and stations in subcenters such as Inage and Tsuga also draw 
many facilities. 
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Figure 5. Distribution of commercial facilities in Chiba City, Japan. 
 

Concerning parameter values, we have tried various values to evaluate the 
relationship between parameters and result. Parameters α and β range from 1 to 10 and 
10 to 500, respectively. We finally set the former to 5 because this yields a reasonable 
number of centers. Neighborhood of tags is defined as the circle of radius r ranging 
from 100 to 1000 meters. 

Discretization used lattices of a resolution ranging from 100×100 to 1000×1000. 
Since the results are almost consistent, we only discuss the result of 100×100 lattice in 
the following. 

Figure 6 shows the relationship between parameter values and the result of 
analysis. In general, Algorithm CB detects more and larger centers with an increase in r 
and a decrease in β. Only the number of centers N decreases for large r as shown in 
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Figure 6a because an increase in the size of centers is often accompanied by a decrease 
in the number of centers. 

 

 
 

Figure 6. The relationship between parameter values and the result of analysis. (a) The 
number of centers, (b) the ratio of bodies assigned to centers, (c) the ratio of tags 

assigned to centers, (d) the standardized size of centers. 
 

We then move to the details of the result. Table 1 shows the commercial 
facilities assigned to centers detected when r=300 and β=50. Nine centers C1-C9 are 
detected whose size is all close to 50 given by β. 

A wide variation exists in the location of centers as seen in Figure 7. Tags 
assigned to C1 and C2 are found only around railway stations such as Chiba, 
Nishi-Chiba, Inage, and Kaihin-Makuhari. These centers represent large shopping malls 
and districts. Center C1 is characterized by bodies B1-B4: Japanese fast-food restaurants, 
banks, cosmetic stores, and coffee shops. This result is reasonable because these 
facilities are found mainly around railway stations in suburban areas of Japan. Center C2 
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is characterized by kimono and flower shops, whose distribution is quite similar to that 
of C1. Since kimono shops are usually located in traditional shopping malls and 
department stores, center C2 is considered to represent the traditional shopping districts 
around Chiba, Inage, and Tsuga. Kaihin-Makuhari has only C1 tags because the station 
opened in 1986 and the shopping district around the station was developed in late 
1980s. 

Tags assigned to centers C3-C9 are dispersed all over Chiba City. They 
represent small shopping districts in and around residential areas. Table 1 suggests that 
these centers can be classified into three groups: {C3, C4, C5, C6}, {C7, C8}, and {C9}. 
Centers {C3, C4, C5, C6} are characterized by convenience stores, beauty shops, and 
laundry shops while {C7, C8} are characterized by sushi restaurants and barber shops. 
The former represents relatively new while the latter is traditional local shopping malls 
and districts in residential areas. The former can be further classified into {C3, C4} and 
{C5, C6} in Table 1, because only {C3, C4} is assigned Japanese and American pubs. 
This reflects that local shopping districts often contain local pubs for residents in Japan. 
Center C9 is characterized by supermarkets, noodle restaurants, and fast-food restaurants. 
It is a typical combination of commercial facilities found in shopping centers in 
suburban and rural areas of Japan. It is confirmed in Figure 7c, though some C9 tags are 
found around railway stations. 

 
Table 1 Commercial facilities assigned to centers detected when r=300 and β=50. 

 



- 26 - 
 

 

 



- 27 - 
 

 

(a) 
 

Chiba

Soga

TsugaInage

Shin-Kemigawa

Kaihin-Makuhari

Makuhari

Nishi-Chiba

Railroad
Station

C1

C2



- 28 - 
 

 
(b) 
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(c) 

 
Figure 7. The location of tags assigned to centers detected when r=300 and β=50. (a) 

{C1, C2}, (b) {C3, C4, C5, C6}, (c) {C7, C8, C9}. 
 

Figure 8 shows the upper half of topology diagrams of centers C1 and C2. 
Bodies B13, B14, B15, B16, and B19 are closely located in both diagrams. This implies that 
many shopping districts represented by C1 and C2 contain fast-food restaurants, 
Japanese and American pubs, convenience stores, and sushi restaurants. Bodies B10 and 
B20, on the other hand, are located relatively far from the above bodies in both diagrams. 
Only some shopping districts represented by C1 and C2 have fruit and vegetable shops 
and pharmacies. 

Bodies located on the left hand side of topology diagram are more similar in 
their distributions. Bodies B13, B14, and B15 are similar in C1 while B17, B21, and B18 are 
similar in C2. The former represent fast-food restaurants, Japanese and American pubs 
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while the latter are beauty shops, barber shops, and laundry shops. It is consistent with 
earlier discussion on centers C1-C6. 
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(b) 
 

Figure 8. Topology diagrams of centers (a) C1 and (b) C2. The numbers over white 
squares indicate the suffix of bodies. The vertical axis indicates the size of spatial 

objects represented by the number of tags. 
 
5. Conclusion 
 This paper proposes a new general method for analyzing the relations among 
distributions of spatial objects. The method has at least three advantages over existing 
ones. First, it can deal with more than two distributions of spatial objects. Second, it is 
applicable independent of the type of spatial objects. Third, it considers not only global 
but also local similarity among distributions. These advantages assure a wide 
applicability and flexibility of the method. 
 An emphasis of the method is on the relations among spatial objects rather than 
the relationship between the space and objects. The space is used mainly in 
preprocessing to define the local relations among spatial objects. Having defined the 
relations, analysis focuses on the relations among tags, bodies, and parts without 
considering the space. Though the space appears in condition ϑS, the its role is quite 
limited. Structure of space is rather defined based on the relations among spatial objects. 

We thus call the method an object-oriented spatial analysis. This treatment of 
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space sounds reasonable because space does not directly determine the status and 
properties of spatial objects in the real world. Space is a medium through which spatial 
objects affect with each other. Our focus should be on the relations among spatial 
objects rather than the relationship between the space and spatial objects. 
 We finally discuss some limitations and extensions of the paper for future 
research. 

First, the method should be extended to treat spatiotemporal distributions. 
Though Sadahiro and Kobayashi (2012) discusses spatially distributed time-series data, 
the method cannot be applicable directly to general spatiotemporal distributions. The 
method proposed in this paper needs further extension and improvement to deal with a 
wide variety of spatiotemporal distributions. 

Second, the visualization of the relations among spatial objects requires further 
development. Topology diagram proposed in section 2.3 is suitable for visualizing the 
topological structure among objects evaluated based on spatial proximity. However, as 
discussed in Section 2.6, a wide variety of relations can be defined among the 
distributions of spatial objects. New methods should be developed for visualizing the 
topological structure of objects evaluated from different perspectives. 

Third, the framework of the method should be extended to confirmatory spatial 
analysis. This paper proposes the method for the use in exploratory spatial analysis, 
where we find research hypotheses that are tested in confirmatory spatial analysis. 
Though a gap usually exists between exploratory and confirmatory spatial analyses, it is 
desirable to perform both analyses within the same framework. Spatial modeling based 
on spatial relations should be further discussed.  
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