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Statistical Methods for Analyzing the Distribution of Spatial Objects in Relation

to a Surface

Abstract

This paper develops statistical methods for analyzing the distribution of spatial

objects -- points, convex polygons, and line segments -- in relation to a surface. We

propose statistics for measuring the relationship between the distribution of these objects

and a surface, and derive their expectations and variances under the null hypothesis that

the objects are independently and randomly distributed. The statistics are approximately

distributed according to the normal distribution under the null hypothesis, which enables

us to test the significance of the spatial relationships statistically. Using the proposed

methods, we empirically analyze the distribution of convenience stores in relation to the

distribution of population in a suburb of Osaka, Japan. Some empirical findings are

shown.

KEYWORDS: Statistical analysis, spatial objects, surface, distribution
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1. INTRODUCTION

Analysis of the spatial relationship between the distributions of spatial objects is

one of the most important subjects in GIS. Epidemiologists, for instance, analyze the

distribution of disease cases in relation to the distribution of spatial objects such as

sources of air pollution to detect the causes of the disease (Gatrell and Rowlingson, 1994;

de Lepper et al., 1995; de Savigny and Wijeyaratne, 1995). Urban analysts are interested

in the spatial interaction among spatial objects such as retail stores, streets, railway

stations, and population, so they investigate the spatial relationship among their

distributions.

There are four types of spatial objects used in GIS, namely, points, lines,

polygons, and surfaces, and numerous statistical methods have been developed for

analyzing the spatial relationship between the distributions of these objects. Let us briefly

take a look at existing methods. The relationship between two distributions of points

(points-points relationship) is often analyzed by the quadrat method which is one of the

major statistical methods to treat this relationship. This method is based on the counts of

points in quadrats, and the significance of the relationship can be examined by statistical

tests such as Pearson's χ2 goodness-of-fit test. Since the quadrat method is easily

applicable, it is widely used in GIS and its related fields. The distance methods based on

the nearest neighbor distance are also used in GIS. For instance, Pielou (1961), Lee

(1979) and Okabe and Miki (1984) investigated the locational interdependence between

two distributions of points using distance methods. Cuzick and Edwards (1990)

developed a distance method for analyzing the distribution of point clusters in relation to

the inhomogeneous point distribution. The points-lines and points-polygons relationships

can be analyzed by the computational methods proposed by Okabe and Fujii (1984) and

Okabe et al. (1988). For the relationship between two distributions of lines, statistical

methods based on integral geometry are useful (see Koshizuka and Ooki, 1982, for

instance).

As seen above, the spatial relationships between point, line, and polygon

distributions can be statistically analyzed by the existing methods. The relationship

between a surface and the distribution of spatial objects, however, is difficult to analyze

because few methods have been developed in the literature. In GIS, a surface is an

indispensable object for representing spatially continuous phenomena, and it often affects

the distribution of discrete spatial objects. Variables continuously defined over a region,

such as terrain elevation and atmospheric temperature, are treated and encoded as surfaces

in GIS. Point distributions are sometimes aggregated into some spatial units to be

surfaces representing the density of points. Given a surface and the distribution of spatial
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objects, we often have a question whether any spatial relationship exists between them:

are the spatial objects distributed where the surface values are large, or independent of the

surface value? GIS permits us to consider these questions visually. The significance of

spatial relationships, however, still remains unanswerable.

To answer the questions statistically, we propose test procedures to explore the

distribution of spatial objects in relation to a surface. In this paper, we consider three

types of spatial objects that are most frequently used in GIS: points, convex polygons,

and line segments. In the following three sections, we successively develop methods for

analyzing their distributions in relation to a surface. Using the methods, we empirically

analyze the distribution of convenience stores in relation to the distribution of population

in Section 5. Finally, we summarize the conclusions in Section 6.

2. DISTRIBUTION OF POINTS AND SURFACE

When analyzing a point distribution in relation to a surface, we can use the methods

developed by Okabe and Sadahiro (1994). They dealt with three types of points-surface

relationships, and proposed measures indicating the fitness of a point distribution and a

surface. In this paper, however, they did not give the probability distributions of the

measures in the case that the points are distributed independent of the surface. This is

problematic because we cannot statistically test the significance of the spatial relationship.

To solve this problem, we propose another method for analyzing the distribution of point

objects in relation to a surface.

Assume that a surface whose value at x is denoted by f(x) is defined in a region S0

of area a0 and perimeter l0, and n points labelled by location vectors x1, x2, ..., xn are

distributed in S0 (Figure 1).

Figure 1. The distribution of point objects and a surface. The gray shade indicates

the surface value.

Given the point distribution and the surface, we have the question whether the

points are distributed where the surface values are large (small), or they are distributed

independent of the surface value (Figure 2). To answer this question, we propose the

statistic Z defined by

Z
n

f i
i

= ( )∑1
x . (1)

If the points are distributed where the surface has large values, that is, the surface values

are large at the locations of the points, Z shows a large value. If the point distribution is
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spatially independent of the surface, Z shows a value close to the average of f(x) in S0.

Figure 2. Three relationships between the distribution of point objects and a

surface. (a) Points are distributed where the surface values are large, (b) points are

distributed where the surface values are small, (c) points are distributed independent of

the surface value.

The significance of Z is examined by the statistical test where the null hypothesis is

that the points are independently and randomly distributed in S0. We reject the null

hypothesis if Z is large enough. Under the null hypothesis, the expectation and the

variance of Z are given by

E Z
a

f d
S

[ ] = ( )
∈∫1

0 0

x x
x

(2)

and

V Z
n a

f d
a

f d
S S

[ ] = ( ){ } − ( )

















∈ ∈∫ ∫1 1 1

0

2

0

2

0 0

x x x x
x x

, (3)

respectively. One might think that the computation of these equations is difficult because

they contain integral terms. The integrals of f(x) and {f(x)}2
 over S0, however, are easily

computable because ordinary GIS provides a module for calculating the volume of three-

dimensional objects defined by surfaces.

The central limit theorem guarantees that, if n is reasonably large, Z  has

approximately the normal distribution with mean E[Z] and variance V[Z] under the null

hypothesis. Consequently, given a significance level, we can test whether the points are

distributed where the surface values are large.

3. DISTRIBUTION OF CONVEX POLYGONS AND SURFACE

Suppose n congruent convex polygons S1, S2, ..., Sn intersecting a region S0 of

area a0 and perimeter l0. Note that polygons are allowed to intersect with each other, and

that not all polygons completely lie in S0 (see Figure 3). The area and perimeter of these

polygons are denoted by a and l, respectively.

Figure 3. The distribution of convex polygons intersecting S0 and a surface. The

gray shade indicates the surface value.

We first consider the region SP, in which the function f(x) representing a surface is

to be defined. Since some polygons may be located partly outside S0, it is not satisfactory
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to define f(x) inside S0. Let CP be the smallest circle containing Si, and CP' be the circle

centered at the origin whose radius is twice as large as that of CP (Figure 4). Then we

have
S S C

S C

P P

P

= ⊕

= + ∈ ∈{ }
0

0

'

, 'x y x y
, (4)

where ⊕  is Minkowski addition operator. This equation indicates that SP is the outer

parallel region of S0, which is generated by buffering operation in GIS. Using SP, we

define the region SB as
S S SB P= \ 0. (5)

Figure 5 shows an example of the regions S0, SP and SB.

Figure 4. The circles CP and CP'.

Figure 5. The regions S0, SP and SB.

Let us consider the question whether the polygons are distributed where the surface

values are large, or they are distributed independent of the surface value. A statistical test

procedure to answer this question occurs on the analogy of the points-surface method

proposed in the preceding section.

Method 0

Let us define the statistic ZP by

Z
na

f dP S
i i

= ( )
∈∫∑1

x x
x

(6)

to measure the spatial relationship between the polygon distribution and the surface.

Suppose the null hypothesis that the polygons are independently and randomly

distributed so as to intersect S0. Calculating the expectation and variance of ZP under the

null hypothesis, we can statistically test if the polygons are distributed where the surface

values are large.

The expectation and the variance mentioned above, however, cannot be calculated

explicitly because of the edge effect. This implies that we have to perform a costly

calculation such as the spatial sampling or the Monte Carlo simulation to obtain these

values. To reduce the computational cost, we develop new methods for analyzing the

distribution of polygons and the surface in the following.

Method 1

This method is applicable when S0 is convex and f(x) is almost constant in SB. In
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this case, we assume:

Assumption 1: The function f(x) is constant in SB.

On this assumption, we define the function f1(x) to represent the surface by

f
f S

f SB
1

0

0

x
x x

x
( ) =

( ) ∈
∈





,

.
(7)

Similar to ZP, to measure the polygons-surface relationship, we define the statistic ZP1 as

Z
na

f d

na
f g d a g d f

P S
i

iS iS
i

i
1 1

0

1

1
0 0

= ( )

= ( ) ( ) + − ( )








∈

∈ ∈

∫∑

∫ ∫∑

x x

x x x x x

x

x x

, (8)

where

g
S S

S Si
i

i

x
x

x
( ) =

∈ ∩
∉ ∩





1

0
0

0

,

.
(9)

To derive the expectation and the variance of ZP1 under the null hypothesis mentioned

earlier, we consider the case where a convex polygon S congruent to Si  is distributed

randomly in such a way that it intersects S0. In this case, we employ the statistic ZP1'

defined by

Z
a

f g d
a

g d fP S S1 0

1
1

1
0 0

' = ( ) ( ) + − ( )



∈ ∈∫ ∫x x x x x

x x
, (10)

where

g
S S

S S
x

x

x
( ) =

∈ ∩
∉ ∩





1

0
0

0

,

.
(11)

Since the polygons are assumed to be distributed independently, the below equations

hold.
E EZ ZP P1 1[ ] = [ ]' (12)

V
V

Z
Z

nP
P

1
1[ ] = [ ]'

. (13)

The expectation of ZP1' is given by

E E EZ
a

f g d
a

g d fP S S1 0

1
1

1
0 0

'[ ] = ( ) ( )[ ] + − ( )[ ]



∈ ∈∫ ∫x x x x x

x x
. (14)

The expectation E[g(x)] indicates the probability that the point located at x is contained in

S, and it does not depend on x. Thus we have

E
E

Z
g

a
f d a f fP S1 0 0 0

0

'[ ] =
( )[ ] ( ) −{ } +

∈∫
x

x x
x

. (15)

Let m(S; x) and m(S; S0) be the measures of the set of all polygons congruent to S
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containing the point at x and that intersecting S0, respectively (for the formal definition of

the measures, see Santaló, 1976). The expectation E[g(x)], the probability of the point

located at x being contained in S, is then written as

E g
m S

m S S
x

x( )[ ] = ( )
( )

;
; 0

. (16)

The measure m(S; x) is given by

m S a;x( ) = 2π . (17)

If both S and S0 are convex polygons, the measure m(S; S0) is given by
m S S a a l l; 0 0 02( ) = +( ) +π (18)

(Santaló, 1976). Substituting equations (16), (17), and (18) into equation (15) yields

E Z
a a l l

f d a l l fP S1
0 0

0 0

1
2

2 2
0

'[ ] =
+( ) +

( ) + +( ){ }∈∫π
π πx x

x
. (19)

As mentioned in the preceding section, the integral in equation (19) can easily be

computed with GIS.

The variance of ZP1' is given by

V

E E

E

Z f
f

a a l l
f d a f

a
f g d

f

a
g d

f

a
f g

P S

S S

1 0
2 0

0 0
0 0

2

2
0
2

2

2

0
2

4
2

1

2

0

0 0

'[ ] = +
+( ) +

( ) −{ }
+ ( ) ( ){ }





+ ( ){ }





− ( ) ( )

∈

∈ ∈

∫

∫ ∫

π
π

x x

x x x x x

x x

x

x x

dd g d Z
S S Px x x

x x∈ ∈∫ ∫ ( )





− [ ]( )
0 0

1

2
E '

. (20)

Using

f d f f d d
S SS

x x x t x t
x xt

( ){ } = ( ) ( )
∈ ∈∈∫ ∫∫

0 00

2

(21)

and

 f g d g d f g g d d
S S SS

x x x x x x x t x t
x x xt

( ) ( ) ( ) = ( ) ( ) ( )
∈ ∈ ∈∈∫ ∫ ∫∫

0 0 00

, (22)

we obtain

 

V EZ
a

g g f f f f f d d

a a l l
f d a f

P SS

S

1 2 0 0
2

0 0

2

0 0

2

1
2

2
2

00

0

'[ ] = ( ) ( )[ ] ( ) ( ) − ( ) +{ }

−
+( ) +









( ) −{ }
∈∈

∈

∫∫

∫

x t x t x x t

x x

xt

x

π
π

. (23)

Similar to E[ZP1'], the second term of equation (23) is computable with GIS. The first

term can also be calculated as follows. The expectation E[g(x)g(t)] indicates the

probability of the two points located at x and t being contained in S, which is given by
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E g g
m S

a a l l
x t

x t( ) ( )[ ] = ( )
+( ) +
; ,

2 0 0π
, (24)

where m(S; x, t) is the measure of the set of all polygons congruent to S containing the

points at x and t. The measure m(S; x, t) has an explicit form, and its value is easily

computable when S has a simple shape (see Appendix 1). Hence we can compute V[ZP1']

with equation (23) using numerical integration.

Under the null hypothesis that the polygons are independently and randomly

distributed so as to intersect S0, the probability distribution of ZP1 is approximated by the

normal distribution with mean E[ZP1] and variance V[ZP1] if n is reasonably large. This

enables us to perform the statistical test based on ZP1 whether the polygons are

distributed where the surface values are large, or they are distributed independent of the

surface value. The degree of approximation will be discussed in Section 5.

Method 2

If S0 is a rectangle and the variability of f(x) in SB is similar to that in S0, another

method can be applied for analyzing the polygons-surface relationship. We first put an

assumption as:

Assumption 2: Variability of f(x) in SB is a copy of that in S0.

This assumption is often called the periodic continuation in spatial modelling (Stoyan and

Stoyan, 1995), and its formal representation is as follows. Let p and q, respectively, be

the locational vectors of the lower-right and upper-left corners of S0 with respect to the

lower-left corner. Consider the translation Tjk(x) written as
T j kjk x x p q( ) = + + , (25)

where j and k are integers. We define T(x) as
T Tjkx x( ) = ( ) (26)

by determining j and k so that Tjk(x)∈ S0. Using T(x), we define f2(x) to represent the

surface by

f
f S

f T SB
2

0x
x x

x x
( ) =

( ) ∈
( )( ) ∈





,

.
(27)

An example of Assumption 2 is depicted in Figure 6. Though one might think that this

assumption is too strong, it is acceptable when the spatial variation of f(x) in SP is

globally uniform.

Figure 6. The function f2(x) in S0 and SB.
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We define the statistic ZP2 by

Z
na

f dP S
i i

2 2

1= ( )
∈∫∑ x x

x
. (28)

For convenience of further discussion, we rewrite this equation using the transformation

of Si  into Si ' defined by

S T Si i' = ( ) ∈{ }x x . (29)

An example of this transformation is depicted in Figure 7. Equation (28) then becomes

Z
na

f g dP iS
i

2

1
0

= ( ) ( )
∈∫∑ x x x

x
, (30)

where

g
S

Si
i

i

x
x

x
( ) =

∈
∉





1

0

' ,

' .
(31)

Figure 7. Transformation of Si  into Si '. (a) The polygon Si , (b) the polygon Si ' generated

through the transformation.

The null hypothesis considered here is that the polygons are independently

distributed so that all possible shapes and positions of Si ' appear randomly. This

hypothesis is equivalent to the case where polygons are independently and randomly

distributed at density n/S0 over the unbounded region where the surface function fu(x) is

defined by

f
f S

f T Su x
x x

x x
( ) =

( ) ∈
( )( ) ∉





0

0

,
(32)

(see Figure 8).

Figure 8. The distribution of polygons and the surface function fu(x).

Under the null hypothesis, the expectation of ZP2 is given by

E EZ
na

f g dP iS
i

2

1
0

[ ] = ( ) ( )[ ]
∈∫∑ x x x

x
. (33)

The expectation E[gi(x)] is the probability of the point located at x being contained in Si ' ,

which is written as

E g
m S

m S Si

x
x( )[ ] = ( )

( )
;
' ;

, (34)

where S is a convex polygon congruent to Si, and m(Si '; S0) is the measure of the set of

all polygons congruent to Si  having differing the shape and position of Si '. The measure

m(Si'; S0) is given by
m S S ai' ; 0 02( ) = π . (35)
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Substitution of equations (17), (34) and (35) into equation (33) yields

E Z
a

f dP S2
0

1
0

[ ] = ( )
∈∫ x x

x
. (36)

The variance of ZP2 is given by

V E
i

Z
n a

f f g g d d
n a

f dP S i iS S2 2 2
0

2
1 1 1

00 0

[ ] = ( ) ( ) ( ) ( )[ ] − ( )





∈∈ ∈∫∫∑ ∫x t x t x t x x

xt x
. (37)

The expectation E[gi(x)gi(t)] indicates the probability that the points located at x and t are

contained in Si '. Hence it is given by

E g g
a

m S Ti i jk
kj

x t x t( ) ( )[ ] = ( )( )
=−∞

∞

=−∞

∞

∑∑1
2 0π

; , , (38)

 When S is very small compared to S0, equation (38) can be rewritten as

E g g
a

m S Ti i jk
kj

x t x t( ) ( )[ ] = ( )( )
=−=−
∑∑1

2 0 1

1

1

1

π
; , . (39)

Substituting equation (38) into equation (37) yields

V Z
n a a

f f m S T d d
n a

f dP S jk
kj

S S2
0

2
0

2
1

2
1 1

00 0

[ ] = ( ) ( ) ( )( ) − ( )





∈

=−∞

∞

=−∞

∞

∈ ∈∫ ∑∑∫ ∫π
x t x t x t x x

xt x
; , .

(40)

Similar to ZP1, ZP2 approaches the normal distribution with mean E[ZP] and

variance V[ZP] as n increases. Consequently, using ZP2, we can perform the statistical

test based on ZP2 to examine the significance of the polygons-surface relationship.

Method 3

In the above two methods, we have explicitly taken account of the edge effect and

put assumptions on f(x) to develop tractable methods. Consequently, both Methods 1 and

2 are applicable to the distribution of polygons of any size. Conversely, if the polygons

are reasonably small compared with S0, we can neglect the edge effect so that no

assumption on f(x) is required. To deal with this case, we propose Method 3 for

analyzing the distribution of small polygons in relation to a surface. This method is useful

when S0 is a convex polygon and the distributed polygons are fairly smaller than S0.

Regarding the size of S0 and Si , we assume:

Assumption 3: The area a is negligible compared to the area a0.

Mathematically, this assumption is represented as
a

a0

0≈ . (41)

Method 3 is obtained by considering Method 1 in the limit a/a0→0. Using equation

(8), we define statistic ZP3 by
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Z
na

f g d a g d f

na
f g d

f

na
a g d

P
a a

iS iS
i

iS
i

a a
iS

i

3
0

0

0

0

0 0 0

0 0 0

1

1

= ( ) ( ) + − ( )








= ( ) ( ) + − ( )





→ ∈ ∈

∈ → ∈

∫ ∫∑

∫∑ ∫∑

lim

lim

/

/

x x x x x

x x x x x

x x

x x

. (42)

Assumption 3 permits the approximation below.

g d aiS
x x

x
( ) ≈

∈∫
0

(43)

Substituting equation (43) into equation (42) yields

Z
na

f g dP iS
i

3

1
0

= ( ) ( )
∈∫∑ x x x

x
. (44)

The expectation and the variance of ZP3 under the null hypothesis are obtained from

equations (19) and (23) in the limit a/a0→0.

E Z
a

f dP S3
0

1
0

[ ] = ( )
∈∫ x x

x
(45)

V Z
n a a

m S f f d d

n a
f d

P SS

S

3
0

2

0

2

1
2

1 1

00

0

[ ] = ( ) ( ) ( )

− ( )







∈∈

∈

∫∫

∫

π
; ,x t x t x t

x x

xt

x

(46)

The derivation of these equations is shown in Appendix 2. The significance of ZP3 can be

tested in a way similar to the one used for ZP1.

We should note that equations (45) and (46) do not include f0. This confirms that

the edge effect disappears when Assumption 3 is reasonable. We should also point out

that these equations are identical with equations (36) and (40) when a/a0≈0. This implies

that Methods 1 and 2 becomes equivalent as a/a0 approaches zero.

In this section, we have proposed three methods for analyzing the polygons-surface

relationship. The choice depends on the shape and size of the region S0, the size of the

distributed polygons, and the variability of the surface. Method 1 works if S0 is convex

and f(x) is almost constant in SB. Method 2 is applicable when S0 is a rectangle and the

spatial variation of f(x) in SB is similar to that in S0. This implies that these methods work

if f(x) is globally constant in SP. Note that the two methods do not require any

assumptions on the sizes of S0 and polygons. Unlike these methods, Method 3 assumes

the sizes of S0 and polygons instead of the variability of the surface. This method works

if S0 is convex and the polygons are very small compared with S0. Since distributed

polygons analyzed in GIS are usually small, Method 3 seems to be the most useful

among three methods.

In the above discussion, we have assumed that all the distributed polygons are
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congruent. The proposed methods, however, can be extended to the case where sets of

congruent polygons are distributed if each set consists of a large number of elements. We

now briefly describe this extension in the case of Method 3.

Let us suppose sets of congruent polygons intersecting S0. Let Θi  be the set of ni

congruent polygons Si1, Si 2, ..., Sini
, whose area and perimeter are denoted by ai  and li ,

respectively. The spatial relationship between the distribution of polygons belonging toΘi

and the surface f(x) can be measured by the statistic ZSi which is defined by

Z
n a

f g dSi
i i

ijS
j

= ( ) ( )
∈∫∑1

0

x x x
x

, (47)

where

g
S S

S Sij

ij

ij

x
x

x
( ) =

∈ ∩
∉ ∩





1

0
0

0

,

.
(48)

Regarding to the distribution of sets of polygons, we define the statistic ZS as

Z
n

n Z

n a
f g d

S i Si
i

i
ijS
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=

= ( ) ( )

∑
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1

1 1
0

x x x
x

, (49)

where n ni
i

= ∑ . Under the null hypothesis that all the polygons are independently and

randomly distributed in such a way that they intersect S0, E[ZS] and V[ZS] are given by,

respectively,

E Z
a

f dS S
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0 0

x x
x

(50)

and
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x x
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x

, (51)

where Si  is a polygon congruent to Sij. The significance of ZS can be statistically tested

when ni 's are reasonably large.

4. DISTRIBUTION OF LINE SEGMENTS AND SURFACE

Using the methods proposed in the preceding section, we analyze the distribution

of line segments in relation to a surface. Assume n line segments L1, L2, ..., Ln of length

l intersecting a region S0 of area a0 and perimeter l0. The function f(x) representing a

surface is defined in SL which is given by
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S S C

S C

L L

L

= ⊕

= + ∈ ∈{ }
0

0x y x y,
, (52)

where CL is the circle with radius l centered at the origin.

We replace the line segments by rectangles R1, R2, ..., Rn of sides b and l (b ≤ l)

so as to employ the polygons-surface methods, and then consider the limit b→0 (see

Figure 9).

Figure 9. The distributions of line segments, their replacing rectangles, and a surface.

The gray shade indicates the surface value.

Let us consider the case of Method 1. The spatial relationship between the distribution of

rectangles and the surface is measured by the statistic ZP1 given by equation (8). Using

ZP1, we define the statistic ZL1 as
Z ZL

b
P1

0
1=

→
lim . (53)

After a few steps of calculation (see Appendix 3 for details), we obtain

Z
nl

f dL L
i i

1 1

1= ( )
∈∫∑ x x

x
. (54)

This implies that the spatial relationship between the distribution of line segments and the

surface can be measured by the curvilinear integral of the surface function on the line

segments.

The expectation and the variance of ZL1 are given by, respectively,
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0 0
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(55)

and
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where

m
l

l

l
' ,

,

.
x t

x t
x t

x t

x t
( ) =

− −
−

− ≤( )
< −( )





 0
(57)

The derivation of these equations is shown in Appendix 3. Methods 2 and 3 can also be

applied in a similar way, and the choice depends on the shape and size of S0 and the

variability of f(x) as in the polygons-surface relationship analysis.
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5. EMPIRICAL STUDY

In this section, using the methods proposed above, we empirically analyze the

distribution of convenience stores in relation to the population distribution. We are

concerned with how the population distribution affects the distribution of convenience

stores. The study region was a 4.5 km × 3.0 km rectangular area in a suburb of Osaka,

Japan. There were 33 convenience stores, and the total population was around 130,000.

The locations of convenience stores were given by their coordinates, and the distribution

of population was given in the square lattice data of side 10 meters.

In Japan, it is often said that the locations of convenience stores depend on the

distribution of persons aged 20-29. Asano (1993), for instance, visually analyzed the

distribution of convenience stores and found that they were located around universities

and apartment houses for the students. To test this hypothesis, we classified the people

by their age and examine the 10-19, 20-29, and 30-39 age groups in this analysis. The

populations of these groups in the study region were around 18000, 22000, and 18000,

respectively. The distributions of these age groups are shown in Figure 10. In this figure,

the population distributions f(x)'s are standardized to allow a visual comparison among

different age groups using the equation

g

f
a

f d

a
f d

a
f d

S

S S

x
x t t

t t t t

t

t t
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
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

∈

∈ ∈

∫

∫ ∫

1

1 1
0

0

2

0

2

0

0 0

, (58)

where S0 is the study region and a is its area. We should note, however, that the

analyzing methods themselves do not require such standardization of surface functions.

Figure 10. The distribution of convenience stores and the standardized population

distribution g(x). White dots indicate the convenience stores, and the circles centered at

the stores are 500 meters buffer regions. Broken line indicates the study region. (a) The

10-19 age group, (b) the 20-29 age group, (c) the 30-39 age group.

Let us discuss the method for analyzing the distribution of convenience stores in

relation to the population distribution. Since the former is a point distribution while the

latter is given as a surface, one possible choice is to use the points-surface method

proposed in Section 2. The points-surface method, however, seems to be inappropriate

for this analysis because this method is meaningful when the point distribution is locally

determined by the surface (similar discussion is found in Okabe and Sadahiro, 1994).
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The customers of retail stores are generally distributed in fairly large regions around the

stores, which suggests that the distribution of stores is affected by the global distribution

of population rather than its local distribution. We hence employed the distribution of

market areas of the convenience stores instead of the distribution of stores themselves,

and analyzed it in relation to the population distribution using the points-surface method

proposed in Section 3. This enables us to consider explicitly the spatial influence of the

population distribution on the distribution of stores. We assume that the market areas are

the circles of radius r centered at the convenience stores, and adopted Methods 1 and 2

because it does not seem that the market areas are so small compared with the study

region.

Methods 1 and 2 are based on several assumptions as mentioned earlier. Both

methods require the normal approximation of the probability distribution of the statistics,

and assume the variability of f(x) in SB. To examine the validity of the normal

approximation, we first performed the Monte Carlo simulation and investigated how the

number and size of circles affect the degree of the approximation. The procedure of this

simulation was as follows:

Step 1) Fix the method and age group.

Step 2) Fix n and r, the number and radius of circles.

Step 3) Give the location of circles following the uniform distribution.

Step 4) Calculate the value of the statistics.

We tried various numbers of n ranging from 1 to 30 and various values of r from 100 to

1000 meters for every method and age group (Step 2). Given the method, age group, n

and r, we repeated Steps 3 and 4 (10,000 iterations). The constant value f0 used in

Method 1 was given by the average density of population in SB, namely,

f
f d

d

S

S

B

B

0 =
( )

∈

∈

∫
∫

x x

x
x

x

. (59)

The obtained probability density distributions are depicted in Figure 11. The

distributions were standardized so that the degree of the approximation can be easily

understood. Since the results did not differ much with methods and age groups, we show

only the results for Method 1 where the distribution of 20-29 age group was employed as

f(x).

Figure 11. The standardized probability density distributions of ZP1. The distribution of

20-29 age group is used as f(x). The radius of the circles is (a) 100 meters, (b) 300

meters, (c) 500 meters. The gray shade indicates the standard normal distribution.
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Figure 11 shows that the probability density distributions of ZP1 approach to the

normal distribution as the number and size of circles increase. For the circles of radius

100 meters, it is difficult to assume the normality if n ≤ 10, but if n ≥ 20, the normal

approximation seems acceptable. For the circles more than 300 meters in radius, we

cannot reject the normality assumption if n ≥ 10. Since n = 33 in the present study, it is

appropriate to employ the normal approximation.

We next investigated whether Assumptions 1 and 2 are acceptable in practice. To

this end, we calculated the statistics based on f(x), the true distribution of population, and

compared the results with those obtained by Methods 1 and 2 in a standardized form.

Since the expectations and variances of the statistics based on f(x) are not given explicitly,

we employed the Monte Carlo simulations (10000 iterations) to obtain the probability

distributions of the statistics. As a result, we performed the analysis using the four

methods shown below.

Method                    Function representing the surface

Method 1 f1(x)

Method 1' f(x)

Method 2 f2(x)

Method 2' f(x)

For the radius r, we tried values from 300 to 700 meters incremented by 10 meters.

This is because people living in Japan usually go to convenience stores by walk, and it is

said that the stores have circular market areas of radius around 500 meters. In Method 2',

we considered the null hypothesis that the convenience stores are distributed

independently and randomly in the region S0, which implies that the circles representing

market areas are distributed in SP' depicted in Figure 12. We divided the study region by

the lattice of squares of side 10 meters to compute the variances of statistics by numerical

integration.

Figure 12. The region SP' where circles are distributed.

The results are shown in Figures 13 and 14. To allow a comparison across

different methods and age groups, we standardized the statistics for each method and

group using

z
Z Z

Z
iPi

Pi Pi

Pi

=
− [ ]

[ ]
=( )E

V
1 2, . (60)
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Figure 13. The results of the analysis given by Methods 1 and 1'. Solid lines and dotted

lines indicate the values of zP1 given by Method 1 and Method 1', respectively.

Critical values of zP1 at significance levels of 1% and 5 % are shown as z0.01 and

z0.05, respectively.

Figure 14. The results of the analysis given by Methods 2 and 2'. Solid lines and dotted

lines indicate the values of zP2 given by Method 2 and Method 2', respectively.

Critical values of zP2 at significance levels of 1% and 5 % are shown as z0.01 and

z0.05, respectively.

Let us compare the results given by Methods 1 and 2 (solid lines) with those given

by Methods 1' and 2' (dotted lines). In Figure 13, we notice that the distance between the

solid and dotted lines increases as r becomes larger, which implies that the difference

between the results given by Methods 1 and 1' increases. This is mainly because SB, the

region in which f(x) and f1(x) have different values, expands as the circles become larger.

When r is smaller than 500 meters, however, the difference between the two lines is not

significant, hence we can say that Assumption 1 is reasonable when the circles are

smaller than 500 meters in radius. Unlike to Figure 13, Figure 14 does not show such a

significant difference between the solid and dotted lines  (note that the vertical scales of

Figures 13 and 14 are different). This suggests that Assumption 2 is allowable regardless

of the size of polygons, and thus Method 2 seems to be more appropriate than Method 1

in this empirical study.

Using Figure 14, we now examine how the population distribution affects the

distribution of convenience stores. In this figure, we notice that the 20-29 age group

shows the largest values of zP2 among the three groups for all r, and they are larger than

the critical value at a significance level of 1%. This suggests that the distribution of the

20-29 age group is the most influential on the distribution of convenience stores among

the three groups. Compared with this group, the 30-39 age group is less influential

though they also show large values of zP2. The distribution of the 10-19 age group, on

the other hand, does not seem to affect the distribution of convenience stores. The null

hypothesis that the convenience stores are distributed independent of the distribution of

the 10-19 age group cannot be rejected at a significance level of 5% for all r.

We finally discuss the size of market areas of the convenience stores. Regarding

the 20-29 and 30-39 age groups, zP2 values are larger than the critical value at a

significance level of 5% at r from 500 to 700 meters. This suggests that the convenience

stores are located so that the population of 20-39 years living within a radius of 500-700

meters from the stores is large enough. Though this result is not inconsistent with the
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hypothetical size of market areas (radius around 500 meters), it suggests that convenience

stores may have larger market areas.

6. CONCLUDING DISCUSSION

In this paper, we have proposed statistical methods for analyzing the distribution of

spatial objects in relation to a surface. Using these methods, we can analyze the

distribution of points, convex polygons, and line segments which are most frequently

used in GIS in relation to a surface.

Choice of analyzing methods depends, of course, on the type of spatial objects.

The object type, however, can be converted if necessary, as shown in the empirical

study. If the distribution of points is locally determined by a surface, the points-surface

method is applicable. Conversely, if the distribution has global relationship with the

surface, it might be better to convert the points into polygons through a transformation

method such as the buffering operation and apply the polygons-surface method. If we

wish to analyze a polygon distribution in relation to a surface by the points-surface

method, we can replace the polygons by their representative points such as the gravity

centers. For further details of the transformation methods, see Bohman-Carter (1994),

for instance.

The GIS data treated as a surface includes not only the continuous variables but

the discrete and binary variables distributed continuously over a region. Hence, by

regarding polygons as the surface of a binary variable, we can analyze the distribution of

convex polygons in relation to the distribution of polygons of different shapes using the

polygons-surface method. Similarly, we can treat the relationship between the

distribution of line segments and the distribution of incongruent polygons.

The methods proposed in this paper, however, have some limitations. We finally

discuss them with possible modifications. First, the proposed methods are not applicable

in a strict sense to the distribution of spatial objects interacting with each other, either

repulsively (spatial avoidance) or attractively (spatial clustering). If we analyze the

distribution of such objects, the obtained results may be erroneous to some extent

because the null hypothesis considered in the statistical tests implicitly assume the

independency of spatial objects. For instance, the null hypothesis may be rejected if

spatial objects tend to gather though they are distributed independent of the surface. In

usual empirical analyses, however, we do not know the spatial interaction among spatial

objects a priori. Hence, if it seems that the objects are strongly interacting with each

other, we should lower the significance level to avoid the error of the test. Second, the

methods proposed in Sections 3 and 4 do not work for the distribution of spatial objects
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which are not allowed to intersect with each other. This is because the inhibition of

intersection involves a strong interaction among spatial objects, which violates the

independency assumption mentioned above. A new method to treat this case should be

developed in further researches.
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APPENDIX 1. THE MEASURE OF ALL POSITIONS OF A CONVEX

POLYGON CONTAINING TWO POINTS

Suppose a convex polygon S of area a and perimeter l. Let m(S; x, t) be the

measure of all convex polygons congruent to S that contain the two points located at x

and t, respectively. This measure can easily be calculated if S has a simple shape. When S

is a circle of radius r, the measure is directly given by the multiplication of 2π and the

area of intersection of two circles of radius r centered at x and t.

m S
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r r
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For a rectangle of sides b, c (b ≤ c), we have
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Substituting b=c=d into equation (A 2) yields the measure of a square of side d:
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(A 3)

For other convex polygons, a procedure of calculating m(S; x, t) is given by Santaló

(1976).

APPENDIX 2. CALCULATION OF E[ZP3] AND V[ZP3]

The expectation of ZP3 is given as follows. Using equation (19), we have
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we obtain
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The variance of ZP3 is derived in the following way. From equations (13) and (23),

we have
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Substituting equation (24), we rewrite equation (A 7) as
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In the limit a/a0→0, δ1(a) reduces to
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Similarly,
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x x

xt

x
. (A 12)

Substituting these equations into equation (A 8), we obtain

V Z
na a a l l

m S f f d d

n a a l l
f d

n a a
m S

P
a a SS

S

3
0 2

0 0

0 0

2

0
2

0 00

0

1

2

1 2
2

1
2

[ ] =
+( ) +{ } ( ) ( ) ( )







−
+( ) +

( )














=

→ ∈∈

∈

∫∫

∫

lim ; ,

;

/ π

π
π

π

x t x t x t

x x

x

xt

x

,,t x t x t x x
xt x

( ) ( ) ( ) − ( )





∈∈ ∈∫∫ ∫f f d d

n a
f d

SS S00 0

1 1

0

2

. (A 13)

APPENDIX 3. CALCULATION OF ZL1, E[ZL1], AND V[ZL1]

Suppose a rectangle R of sides b, l (b ≤ l) and define the coordinate system whose

axes are parallel to the sides of R and origin is located at the lower-left vertex of R.

(Figure A 1). Let us denote the lower side of R as L.

Figure A 1. The rectangle R and the coordinate system.

We consider the integral of f(x) over R given by

I
bl

f dR R
x x x

x
( ) = ( )

∈∫1
(A 14)

and the integral of f(x) on L,

I
l

f dL L
x x x

x
( ) = ( )

∈∫1
. (A 15)

In the limit b→0, equation (A 14) reduces to equation (A 15) as below.

lim lim
b

R
b R

lb

L

I
bl

f d

b l
f dxdy

I

→ → ∈
( ) = ( )

= ( )

= ( )

∫

∫∫

0 0

00

1

1

x x x

x

x

x

∂
∂

(A 16)

Applying equation (A 16) to equation (53), we obtain
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Z
nbl

f d

nl
f d

L
b S

i

L
i

i

i

1
0

1

1

1

1

= ( )

= ( )

→ ∈

∈

∫∑

∫∑

lim x x

x x

x

x

. (A 17)

The expectation and the variance of ZL1 are calculated as follows.

E EZ Z

a l l
f d l lf

L
b

P

S

1
0

1

0 0
0 0

1
0

[ ] = [ ]

=
+

( ) +{ }
→

∈∫

lim

π
π x x

x

(A 18)

Similarly,

V VZ Z

nl a l l

m R

b
f f f f f d d

n a l l
f d

L
b

P

bSS

S

1
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2
0 0
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2
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2

1
2
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00
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[ ] = [ ]

=
+( )

( )







( ) ( ) − ( ) +{ }

−
+









( ) −

→

→∈∈

∈

∫∫

∫

lim

lim
; ,

π

π
π

x t
x t x x t

x x

xt

x
aa f0 0

2{ }

.(A

19)

In the limit b→0, 
m R

b

; ,x t( )
2  reduces to

lim
; , lim ,

,
b

b
m R

b

b

b
l

l
→

→
( ) =

( ) − ≤( )
< −( )






0 2

0 2

0

x t x t

x t

ϕ
(A 20)

where ϕ(b) is given by

ϕ b l b l b bl
b( ) = − − − − − +
−

4 4 2 42 2 2x t x t
x t

arcsin . (A 21)

Applying a Taylor series expansion to ϕ(b), we obtain

ϕ ϕ ϕ ϕb b b O b

l
b O b

( ) = ( ) + ( ) + ( ) + ( )

=
− −( )

−
+ ( )

0 0
1
2

0

2

2 3

2 3

' ' '

x t

x t

. (A 22)

Hence,

lim lim
b b

b

b

l
O b

l

→ →

( ) =
− −( )

−
+ ( )








=
− −( )

−

0 2 0

2

2

ϕ x t

x t

x t

x t

. (A 23)
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Using equations (A 19), (A 20) and (A 23), we obtain

V Z
nl a l l

m f f f f f d d

n a l l
f d a f

L SS

S

1 2
0 0

0 0
2

0 0

2

0 0

2

1
2

1
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0
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−
+








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∈∈

∈

∫∫

∫

π

π
π

' ,x t x t x x t

x x
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x

, (A 24)

where

m
l

l

l
' ,

,

.
x t

x t
x t

x t

x t
( ) =

− −
−

− ≤( )
< −( )





 0
. (A 25)
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FIGURES

Figure 1 The distribution of point objects and a surface. The gray shade indicates the

surface value.

Figure 2 Three relationships between the distribution of point objects and a surface.

(a) Points are distributed where the surface values are large, (b) points are

distributed where the surface values are small, (c) points are distributed

independent of the surface value.

Figure 3 The distribution of convex polygons intersecting S0 and a surface. The gray

shade indicates the surface value.

Figure 4 The circles CP and CP'.

Figure 5 The regions S0, SP and SB.

Figure 6 The function f2(x) in S0 and SB.

Figure 7 Transformation of Si  into Si '. (a) The polygon Si , (b) the polygon Si '

generated through the transformation.

Figure 8 The distribution of polygons and the surface function fu(x).

Figure 9 The distributions of line segments, their replacing rectangles, and a surface.

The gray shade indicates the surface value.

Figure 10 The distribution of convenience stores and the standardized population

distribution g(x). White dots indicate the convenience stores, and the circles

centered at the stores are 500 meters buffer regions. Broken line indicates

the study region. (a) The 10-19 age group, (b) the 20-29 age group, (c) the

30-39 age group.

Figure 11 The standardized probability density distributions of ZP1. The distribution

of 20-29 age group is used as f(x). The radius of the circles is (a) 100

meters, (b) 300 meters, (c) 500 meters. The gray shade indicates the

standard normal distribution.

Figure 12 The region SP' where circles are distributed.

Figure 13 The results of the analysis given by Methods 1 and 1'. Solid lines and

dotted lines indicate the values of zP1 given by Method 1 and Method 1',

respectively. Critical values of zP1 at significance levels of 1% and 5 % are

shown as z0.01 and z0.05, respectively.

Figure 14 The results of the analysis given by Methods 2 and 2'. Solid lines and

dotted lines indicate the values of zP2 given by Method 2 and Method 2',

respectively. Critical values of zP2 at significance levels of 1% and 5 % are

shown as z0.01 and z0.05, respectively.

Figure A 1 The rectangle R and the coordinate system.
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