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Statistical Methods for Analyzing the Distribution of Spatial Objectsin Relation
to a Surface

Abstract

This paper develops statistical methods for analyzing the distribution of spatial
objects -- points, convex polygons, and line segments -- in relation to a surface. We
propose statistics for measuring the relationship between the distribution of these objects
and a surface, and derive their expectations and variances under the null hypothesis that
the objects are independently and randomly distributed. The statistics are approximately
distributed according to the normal distribution under the null hypothesis, which enables
us to test the significance of the spatial relationships statistically. Using the proposed
methods, we empirically analyze the distribution of convenience stores in relation to the
distribution of population in a suburb of Osaka, Japan. Some empirical findings are
shown.
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1. INTRODUCTION

Analysis of the spatial relationship between the distributions of spatial objectsis
one of the most important subjects in GIS. Epidemiologists, for instance, analyze the
distribution of disease cases in relation to the distribution of spatial objects such as
sources of air pollution to detect the causes of the disease (Gatrell and Rowlingson, 1994,
de Lepper et al., 1995; de Savigny and Wijeyaratne, 1995). Urban analysts are interested
in the spatial interaction among spatial objects such as retail stores, streets, railway
stations, and population, so they investigate the spatial relationship among their
distributions.

There are four types of spatial objects used in GIS, namely, points, lines,
polygons, and surfaces, and numerous statistical methods have been developed for
analyzing the spatial relationship between the distributions of these objects. Let us briefly
take alook at existing methods. The relationship between two distributions of points
(points-points relationship) is often analyzed by the quadrat method which is one of the
major statistical methods to treat this relationship. This method is based on the counts of
pointsin quadrats, and the significance of the relationship can be examined by statistical
tests such as Pearson's X2 goodness-of-fit test. Since the quadrat method is easily
applicable, it iswidely used in GIS and its related fields. The distance methods based on
the nearest neighbor distance are also used in GIS. For instance, Pielou (1961), Lee
(1979) and Okabe and Miki (1984) investigated the locational interdependence between
two distributions of points using distance methods. Cuzick and Edwards (1990)
developed a distance method for analyzing the distribution of point clustersin relation to
the inhomogeneous point distribution. The points-lines and points-polygons relationships
can be analyzed by the computational methods proposed by Okabe and Fujii (1984) and
Okabe et al. (1988). For the relationship between two distributions of lines, statistical
methods based on integral geometry are useful (see Koshizuka and Ooki, 1982, for
instance).

As seen above, the spatial relationships between point, line, and polygon
distributions can be statistically analyzed by the existing methods. The relationship
between a surface and the distribution of spatial objects, however, is difficult to analyze
because few methods have been developed in the literature. In GIS, a surface is an
indispensable object for representing spatially continuous phenomena, and it often affects
the distribution of discrete spatial objects. Variables continuously defined over aregion,
such asterrain elevation and atmospheric temperature, are treated and encoded as surfaces
in GIS. Point distributions are sometimes aggregated into some spatial units to be
surfaces representing the density of points. Given a surface and the distribution of spatial



objects, we often have a question whether any spatial relationship exists between them:
are the spatia objects distributed where the surface values are large, or independent of the
surface value? GIS permits us to consider these questions visually. The significance of
gpatial relationships, however, still remains unanswerable.

To answer the questions statistically, we propose test procedures to explore the
distribution of spatial objects in relation to a surface. In this paper, we consider three
types of spatial objects that are most frequently used in GIS: points, convex polygons,
and line segments. In the following three sections, we successively develop methods for
analyzing their distributions in relation to a surface. Using the methods, we empirically
analyze the distribution of convenience storesin relation to the distribution of population
in Section 5. Finally, we summarize the conclusionsin Section 6.

2. DISTRIBUTION OF POINTS AND SURFACE

When analyzing a point distribution in relation to a surface, we can use the methods
developed by Okabe and Sadahiro (1994). They dealt with three types of points-surface
relationships, and proposed measures indicating the fitness of a point distribution and a
surface. In this paper, however, they did not give the probability distributions of the
measures in the case that the points are distributed independent of the surface. Thisis
problematic because we cannot statistically test the significance of the spatia relationship.
To solve this problem, we propose another method for analyzing the distribution of point
objectsin relation to a surface.

Assume that a surface whose value at x is denoted by f(x) is defined in aregion &
of area ag and perimeter |p, and n points labelled by location vectors X1, X, ..., X, are
distributed in & (Figure 1).

Figure 1. The distribution of point objects and a surface. The gray shade indicates
the surface value.

Given the point distribution and the surface, we have the question whether the
points are distributed where the surface values are large (small), or they are distributed
independent of the surface value (Figure 2). To answer this question, we propose the
statistic Z defined by

Z:%Zf(xi). @)

If the points are distributed where the surface has large values, that is, the surface values
are large at the locations of the points, Z shows alarge value. If the point distribution is



gpatially independent of the surface, Z shows a value close to the average of f(x) in &,.

Figure 2. Three relationships between the distribution of point objects and a
surface. (a) Points are distributed where the surface values are large, (b) points are
distributed where the surface values are small, (¢) points are distributed independent of
the surface value.

The significance of Z is examined by the statistical test where the null hypothesisis
that the points are independently and randomly distributed in S. We reject the null
hypothesis if Z is large enough. Under the null hypothesis, the expectation and the
variance of Z are given by

1
E[Z] = P N f(x)dx 2
and
10 .. D (0
V[Z] =—0- XDSD{f(x)} sl f(x)dxgél ©)

respectively. One might think that the computation of these equationsis difficult because
they contain integral terms. The integrals of f(x) and {f(x)}2 over S, however, are easily
computable because ordinary GIS provides amodule for calculating the volume of three-
dimensional objects defined by surfaces.

The central limit theorem guarantees that, if n is reasonably large, Z has
approximately the normal distribution with mean E[Z] and variance V[Z] under the null
hypothesis. Consequently, given a significance level, we can test whether the points are
distributed where the surface values are large.

3. DISTRIBUTION OF CONVEX POLYGONS AND SURFACE

Suppose n congruent convex polygons S, S, ..., S, intersecting a region S of
area ag and perimeter |o. Note that polygons are allowed to intersect with each other, and
that not all polygons completely liein S (see Figure 3). The area and perimeter of these
polygons are denoted by a and |, respectively.

Figure 3. The distribution of convex polygons intersecting & and a surface. The
gray shade indicates the surface value.

We first consider the region Sy, in which the function f(x) representing a surface is
to be defined. Since some polygons may be located partly outside &, it is not satisfactory



to define f(x) inside &. Let Cp be the smallest circle containing §, and Cp' be the circle
centered at the origin whose radius is twice as large as that of Cp (Figure 4). Then we
have
$=50C,

= {x +yix 0S,,y DCP'} ’
where O is Minkowski addition operator. This equation indicates that Sp is the outer
parallel region of S, which is generated by buffering operation in GIS. Using Sp, we
definetheregion Sz as

(4)

$=3\S. (5)
Figure 5 shows an example of the regions &, Sp and Ss.

Figure 4. The circles Cp and Cp'.
Figure 5. Theregions &, Sp and Sg.

Let us consider the question whether the polygons are distributed where the surface
values are large, or they are distributed independent of the surface value. A statistical test
procedure to answer this question occurs on the analogy of the points-surface method
proposed in the preceding section.

Method 0
Let us define the statistic Zp by

1
Z, = . ZLD& f(x)dx (6)

to measure the spatial relationship between the polygon distribution and the surface.
Suppose the null hypothesis that the polygons are independently and randomly
distributed so as to intersect §. Calculating the expectation and variance of Zp under the
null hypothesis, we can statistically test if the polygons are distributed where the surface
values are large.

The expectation and the variance mentioned above, however, cannot be calculated
explicitly because of the edge effect. This implies that we have to perform a costly
calculation such as the spatial sampling or the Monte Carlo simulation to obtain these
values. To reduce the computational cost, we develop new methods for analyzing the
distribution of polygons and the surface in the following.

Method 1
This method is applicable when & is convex and f(x) is almost constant in Sg. In



this case, we assume:
Assumption 1: The function f(x) is constant in Ss.

On this assumption, we define the function f(x) to represent the surface by

_Of(x) x0O8§,
fi(x) = 0t xos, (7

Similar to Zp, to measure the polygons-surface relationship, we define the statistic Zp; as

=1 ZIxDS f,(x)dx

)
zg’ dx+% J’ g (x dxmfﬁ
where
M xU§n g,
g (x)= x0SN S, )

To derive the expectation and the variance of Zp; under the null hypothesis mentioned
earlier, we consider the case where a convex polygon S congruent to § is distributed
randomly in such away that it intersects &. In this case, we employ the statistic Zp;'
defined by

| 1 |:|

Zo' =~ [, 1090 +Bl 90 (10)

where

_ [ xUSn g,
9= yosns,

Since the polygons are assumed to be distributed independently, the below equations

hold.

(11)

E[Z,,] = €[Z,,] (12
V[Z.,]= ﬂ%l (13)

The expectation of Zp;' is given by
q-1 1 O
E[Z.,]= EJ’XBSD f (x)E[g(x)]dx + gl— ELD% E[g(x)] o - (14)

The expectation E[g(x)] indicates the probability that the point located at x is contained in
S and it does not depend on x. Thus we have

E[Z,,] = ﬂ@{ [, f(x)dx - &, fo] + f,. (15)

Let m(S, x) and m(S, &) be the measures of the set of all polygons congruent to S



containing the point at x and that intersecting &y, respectively (for the formal definition of
the measures, see Santal6, 1976). The expectation E[g(x)], the probability of the point
located at x being contained in S isthen written as

m(S x
E[g(x)] = m((s SJ)) (16)
The measure m(S, X) isgiven by
m(Sx) =2m. (17)
If both Sand S are convex polygons, the measure m(S, &) is given by
m(SS)=2n(a, +a)+1, (18)
(Santal6, 1976). Substituting equations (16), (17), and (18) into equation (15) yields
E[Z,,] = ora ja) N 2nJ’XB% f(x)dx + (2@ + 1) fo] . (19)

As mentioned in the preceding section, the integral in equation (19) can easily be
computed with GIS.
The variance of Zp,' isgiven by

V[Zp]= 12+ Zn(a04f;) o : [.oq fOQ)x - aofo}

oL ﬁxm dx] H+a ﬁxm%g dx]zﬁ (20)
2R L 09000 a0exE-(E[2])

Using
[J’XD% f(x)dx} = J;DS] (s, f(x) f (t)dxdt (21)
and
IXQSO f(x)g(x)dx s g(x)dx = iy f(x)g(x)g(t)dxdt, (22)
we obtain

V[Z,] = ai e fooe LB F(1(0) - 26, £(x) + £

- (23)

. DZ[ F(x)dx - a f }2

SZn(ao + a) +1,l B .LDSD %
Similar to E[Zp11], the second term of equation (23) is computable with GIS. The first
term can also be calculated as follows. The expectation E[g(x)g(t)] indicates the
probability of the two points located at x and t being contained in S which is given by




Ela()olt)] =, n(r;‘f?z)tl 0 (24

where m(S, x, t) is the measure of the set of al polygons congruent to S containing the
points at x and t. The measure m(S; X, t) has an explicit form, and its value is easily
computable when Shas a simple shape (see Appendix 1). Hence we can compute V[Zp1]
with equation (23) using numerical integration.

Under the null hypothesis that the polygons are independently and randomly
distributed so asto intersect §, the probability distribution of Zp; is approximated by the
normal distribution with mean E[Zp,] and variance V[Zp4] if nisreasonably large. This
enables us to perform the statistical test based on Zp; whether the polygons are
distributed where the surface values are large, or they are distributed independent of the
surface value. The degree of approximation will be discussed in Section 5.

Method 2

If S is arectangle and the variability of f(x) in Sgis similar to that in &, another
method can be applied for analyzing the polygons-surface relationship. We first put an
assumption as:

Assumption 2: Variability of f(x) in Sgisacopy of that in &.

This assumption is often called the periodic continuation in spatial modelling (Stoyan and
Stoyan, 1995), and its formal representation is as follows. Let p and q, respectively, be
the locational vectors of the lower-right and upper-left corners of & with respect to the
lower-left corner. Consider the tranglation T, (x) written as

T, (x)=x+jp+kg, (25)
wherej and k are integers. We define T(X) as
T(x) = Ty (x) (26)

by determining j and k so that Tjk(x)0Sy. Using T(x), we define f5(x) to represent the
surface by
0N (fT((Xx))) . ?;'
B :
An example of Assumption 2 is depicted in Figure 6. Though one might think that this
assumption is too strong, it is acceptable when the spatial variation of f(x) in Sp is
globally uniform.

(27)

Figure 6. The function fy(x) in § and Sg.



We define the statistic Zp, by
1
Z,, = . Zj'xms f,(x)dx. (28)

For convenience of further discussion, we rewrite this equation using the transformation
of § into §' defined by

§'={T(x)xOs}. (29)
An example of thistransformation is depicted in Figure 7. Equation (28) then becomes
_ 1
ZP2 - n_a IZIXDS) f(X)gi (X)dX’ (30)
where
L xos,

Figure 7. Transformation of § into §'. () The polygon S, (b) the polygon S' generated
through the transformation.

The null hypothesis considered here is that the polygons are independently
distributed so that all possible shapes and positions of §' appear randomly. This
hypothesis is equivalent to the case where polygons are independently and randomly
distributed at density /Sy over the unbounded region where the surface function fy(x) is
defined by

O f(x) x0S,
=) xs )

(see Figure 8).
Figure 8. The distribution of polygons and the surface function f(x).

Under the null hypothesis, the expectation of Zp; is given by
1
E[Z.,] = - Z [, FOOE[G ()] (33)

The expectation E[g; (X)] is the probability of the point located at x being containedin §',

whichiswritten as
_ m(Sx
E[g(x)] —ﬁ (34)
where Sisaconvex polygon congruent to §, and m(S"; &) is the measure of the set of
all polygons congruent to § having differing the shape and position of §'. The measure
mM(S'"; S) isgiven by
m(§':S) = 278, (35)

10



Substitution of equations (17), (34) and (35) into equation (33) yields

1
E[Z,,] = a Jics, ()b (36)
The variance of Zpy isgiven by
1 101 f
V[Z,,] = o ,Z.[tmso s | f(t)E[ g (x)g (t)]dxdt - Eila: f(x)dx% . (37)

The expectation E[g; (X)g; (t)] indicates the probability that the points located at x and t are
containedin §'. Hence it is given by

Eo (g ()] =5 — Z 3 m{sx (), (38)
When Sisvery small compared to S, equatl on (38) can be rewritten as
Ea (g (0)] =5 z 5 msx T, (1) (39

J=—lk-—
Substituting equation (38) into equation (37) yields

f
2nr:';10a .[tuso X0, Feaf(t) :Z_wkz (SXTK t))dth—*E%J' f(x) dxg

V[sz] =

(40)

Similar to Zp,, Zpo approaches the normal distribution with mean E[Zp] and
variance V[Zp] as n increases. Consequently, using Zp,, we can perform the statistical

test based on Zp, to examine the significance of the polygons-surface relationship.

Method 3

In the above two methods, we have explicitly taken account of the edge effect and
put assumptions on f(x) to develop tractable methods. Consequently, both Methods 1 and
2 are applicable to the distribution of polygons of any size. Conversely, if the polygons
are reasonably small compared with Sy, we can neglect the edge effect so that no
assumption on f(x) is required. To deal with this case, we propose Method 3 for
analyzing the distribution of small polygonsin relation to a surface. This method is useful
when & is aconvex polygon and the distributed polygons are fairly smaller than &,.

Regarding the size of Syand §, we assume:

Assumption 3: The areaais negligible compared to the area ag.

Mathematically, this assumption is represented as

2 =o. (42)
3

Method 3 is obtained by considering Method 1 in the limit a/ag— 0. Using equation
(8), we define statistic Zps by

11



Z,,= a,l;ggon—la zﬁj (00600 o[ 4R

(42)
ZIXDS) dX +a/|f!\0m0naz %l IXDSO g' dX
Assumption 3 permits the approximation below.
g(x)dx=a (43)

x08
Substituting equation (43) into equati on (42) yields

z Ix 0s, ' (44)

The expectation and the variance of Zp3 under the null hypothesis are obtained from
equations (19) and (23) in the limit a/ag - 0.

E[Z..] = i [, X)X (45)
VEAE Zn—T;@Z [e oo MSX OO0 (et
(46)
101 rf
. DaOJ’XDSO f(x)dxg

The derivation of these equationsis shown in Appendix 2. The significance of Zpz can be
tested in away similar to the one used for Zp;.

We should note that equations (45) and (46) do not include fy. This confirms that
the edge effect disappears when Assumption 3 is reasonable. We should also point out
that these equations are identical with equations (36) and (40) when a/ag=0. Thisimplies
that Methods 1 and 2 becomes equivalent as a/ag approaches zero.

In this section, we have proposed three methods for analyzing the polygons-surface
relationship. The choice depends on the shape and size of the region &, the size of the
distributed polygons, and the variability of the surface. Method 1 works if & is convex
and f(x) is amost constant in Sg. Method 2 is applicable when & is arectangle and the
gpatial variation of f(x) in Sgissimilar to that in . Thisimplies that these methods work
if f(x) is globally constant in Sp. Note that the two methods do not require any
assumptions on the sizes of § and polygons. Unlike these methods, Method 3 assumes
the sizes of S and polygons instead of the variability of the surface. This method works
if S is convex and the polygons are very small compared with . Since distributed
polygons analyzed in GIS are usually small, Method 3 seems to be the most useful
among three methods.

In the above discussion, we have assumed that all the distributed polygons are

12



congruent. The proposed methods, however, can be extended to the case where sets of
congruent polygons are distributed if each set consists of alarge number of elements. We
now briefly describe this extension in the case of Method 3.

Let us suppose sets of congruent polygons intersecting S. Let ©; be the set of n;
congruent polygons §1, S», ..., Sn, Whose area and perimeter are denoted by a; and I;,
respectively. The spatial relationship between the distribution of polygons belonging to®,
and the surface f(x) can be measured by the statistic Zg which is defined by

Z __ZIDSO glj (47)
where
4 x0§ n S,
gij(X):%) XDZ;E_ (48)

Regarding to the distribution of sets of polygons, we define the statistic Zgas

Z :EZniZS
——Z ZLDS) X) (x

where n = Z n . Under the null hypothesis that all the polygons are independently and

(49)

randomly distributed in such away that they intersect &, E[Zg and V[Zg are given by,
respectively,

£z, = i . 1000 (50)
and
V[zg] = ﬁ > % foe Jooe S ()1 (t)bect

: (51)

101
nEpOIXDSo f(x)dxg

where § is apolygon congruent to S;. The significance of Zs can be Statistically tested
when nj's are reasonably large.

4. DISTRIBUTION OF LINE SEGMENTS AND SURFACE
Using the methods proposed in the preceding section, we analyze the distribution
of line segmentsin relation to a surface. Assume n line segments Ly, Lo, ..., L, of length

| intersecting aregion & of area ag and perimeter |o. The function f(x) representing a
surfaceisdefined in § which is given by

13



s=s0C
={x +yx 0S,y DCL} ’
where C_ isthe circlewith radius| centered at the origin.
We replace the line segments by rectangles Ry, Ry, ..., R, of sidesband | (b <)
so as to employ the polygons-surface methods, and then consider the limit b- O (see
Figure 9).

(52)

Figure 9. The distributions of line segments, their replacing rectangles, and a surface.
The gray shade indicates the surface value.

Let us consider the case of Method 1. The spatial relationship between the distribution of
rectangles and the surface is measured by the statistic Zp; given by equation (8). Using
Zp1, We define the statistic Z; 1 as
Z,=limZ,. (53)
b-0
After afew steps of calculation (see Appendix 3 for details), we obtain
1
ZLl = H ZJ.XDLi fl(X)dX. (54)

Thisimplies that the spatial relationship between the distribution of line segments and the
surface can be measured by the curvilinear integral of the surface function on the line
segments.

The expectation and the variance of Z; 1 are given by, respectively,

1
E[z,,]= M{"Lm f(x)dx + |0|f0] (55)
and
_ 1 _ 2
V[z,,] = (e, + 1) froe S, M OO () F(8) = 2 (x) + 1 et
., (56)
10 f 2
- Dmomi_'_ N E[IXDSJ f(x)dx - aofo]
where
i . Sl RO
m(x,t)=0 [x—t (x-t<1). (57)

H o (I <x=t)).
The derivation of these equations is shown in Appendix 3. Methods 2 and 3 can aso be
applied in a similar way, and the choice depends on the shape and size of S and the
variability of f(x) asin the polygons-surface relationship analysis.

14



5. EMPIRICAL STUDY

In this section, using the methods proposed above, we empirically analyze the
distribution of convenience stores in relation to the population distribution. We are
concerned with how the population distribution affects the distribution of convenience
stores. The study region was a 4.5 km x 3.0 km rectangular areain a suburb of Osaka,
Japan. There were 33 convenience stores, and the total population was around 130,000.
The locations of convenience stores were given by their coordinates, and the distribution
of population was given in the square lattice data of side 10 meters.

In Japan, it is often said that the locations of convenience stores depend on the
distribution of persons aged 20-29. Asano (1993), for instance, visually analyzed the
distribution of convenience stores and found that they were located around universities
and apartment houses for the students. To test this hypothesis, we classified the people
by their age and examine the 10-19, 20-29, and 30-39 age groups in this analysis. The
populations of these groups in the study region were around 18000, 22000, and 18000,
respectively. The distributions of these age groups are shown in Figure 10. In thisfigure,
the population distributions f(x)'s are standardized to allow a visual comparison among
different age groups using the equation

F(x) == [ f(t)at
g(x) = . a"I;l =t (58)
a tDSO{f(t)} dt—ga—oﬁuso f(t)dtg

where & is the study region and a is its area. We should note, however, that the
analyzing methods themselves do not require such standardization of surface functions.

Figure 10. The distribution of convenience stores and the standardized population
distribution g(x). White dots indicate the convenience stores, and the circles centered at
the stores are 500 meters buffer regions. Broken line indicates the study region. (a) The
10-19 age group, (b) the 20-29 age group, (c) the 30-39 age group.

Let us discuss the method for analyzing the distribution of convenience stores in
relation to the population distribution. Since the former is a point distribution while the
latter is given as a surface, one possible choice is to use the points-surface method
proposed in Section 2. The points-surface method, however, seems to be inappropriate
for this analysis because this method is meaningful when the point distribution islocally
determined by the surface (similar discussion is found in Okabe and Sadahiro, 1994).
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The customers of retail stores are generally distributed in fairly large regions around the
stores, which suggests that the distribution of storesis affected by the global distribution
of population rather than its local distribution. We hence employed the distribution of
market areas of the convenience stores instead of the distribution of stores themselves,
and analyzed it in relation to the population distribution using the points-surface method
proposed in Section 3. This enables us to consider explicitly the spatial influence of the
population distribution on the distribution of stores. We assume that the market areas are
the circles of radius r centered at the convenience stores, and adopted Methods 1 and 2
because it does not seem that the market areas are so small compared with the study
region.

Methods 1 and 2 are based on several assumptions as mentioned earlier. Both
methods require the normal approximation of the probability distribution of the statistics,
and assume the variability of f(x) in Sg. To examine the validity of the normal
approximation, we first performed the Monte Carlo simulation and investigated how the
number and size of circles affect the degree of the approximation. The procedure of this
simulation was as follows:

Step 1) Fix the method and age group.

Step 2) Fix nand r, the number and radius of circles.

Step 3) Givethe location of circles following the uniform distribution.

Step 4) Calculate the value of the statistics.

We tried various numbers of n ranging from 1 to 30 and various values of r from 100 to
1000 meters for every method and age group (Step 2). Given the method, age group, n
and r, we repeated Steps 3 and 4 (10,000 iterations). The constant value fg used in
Method 1 was given by the average density of population in Sg, namely,

f(x)dx
fO:—LDSB %) : (59)

dx
x0Sg

The obtained probability density distributions are depicted in Figure 11. The
distributions were standardized so that the degree of the approximation can be easily
understood. Since the results did not differ much with methods and age groups, we show
only the results for Method 1 where the distribution of 20-29 age group was employed as

f(x).
Figure 11. The standardized probability density distributions of Zp,. The distribution of

20-29 age group is used as f(x). The radius of the circlesis (a) 100 meters, (b) 300
meters, (¢) 500 meters. The gray shade indicates the standard normal distribution.

16



Figure 11 shows that the probability density distributions of Zp; approach to the
normal distribution as the number and size of circles increase. For the circles of radius
100 meters, it is difficult to assume the normality if n < 10, but if n = 20, the normal
approximation seems acceptable. For the circles more than 300 meters in radius, we
cannot regject the normality assumption if n > 10. Since n = 33 in the present study, itis
appropriate to employ the normal approximation.

We next investigated whether Assumptions 1 and 2 are acceptable in practice. To
this end, we calculated the statistics based on f(x), the true distribution of population, and
compared the results with those obtained by Methods 1 and 2 in a standardized form.
Since the expectations and variances of the statistics based on f(x) are not given explicitly,
we employed the Monte Carlo simulations (10000 iterations) to obtain the probability
distributions of the statistics. As a result, we performed the analysis using the four
methods shown below.

Method Function representing the surface
Method 1 f1(x)
Method 1' f(x)
Method 2 fa(X)
Method 2' f(x)

For the radius r, we tried values from 300 to 700 meters incremented by 10 meters.
Thisis because people living in Japan usually go to convenience stores by walk, and it is
said that the stores have circular market areas of radius around 500 meters. In Method 2,
we considered the null hypothesis that the convenience stores are distributed
independently and randomly in the region S, which implies that the circles representing
market areas are distributed in S5' depicted in Figure 12. We divided the study region by
the lattice of squares of side 10 metersto compute the variances of statistics by numerical
integration.

Figure 12. Theregion ' where circles are distributed.

The results are shown in Figures 13 and 14. To allow a comparison across
different methods and age groups, we standardized the statistics for each method and

group using
_Zn —HZ,

(i=12). (60)

17



Figure 13. The results of the analysis given by Methods 1 and 1'. Solid lines and dotted
lines indicate the values of zp; given by Method 1 and Method 1', respectively.
Critical values of zp; at significance levels of 1% and 5 % are shown as zy9; and

2,05, respectively.

Figure 14. The results of the analysis given by Methods 2 and 2'. Solid lines and dotted
lines indicate the values of zp, given by Method 2 and Method 2', respectively.
Critical values of zp, at significance levels of 1% and 5 % are shown as zy9; and

2,05, respectively.

Let us compare the results given by Methods 1 and 2 (solid lines) with those given
by Methods 1' and 2' (dotted lines). In Figure 13, we notice that the distance between the
solid and dotted lines increases as r becomes larger, which implies that the difference
between the results given by Methods 1 and 1' increases. Thisis mainly because Sg, the
region in which f(x) and f1(x) have different values, expands as the circles become larger.
When r is smaller than 500 meters, however, the difference between the two linesis not
significant, hence we can say that Assumption 1 is reasonable when the circles are
smaller than 500 meters in radius. Unlike to Figure 13, Figure 14 does not show such a
significant difference between the solid and dotted lines (note that the vertical scales of
Figures 13 and 14 are different). This suggests that Assumption 2 is alowable regardiess
of the size of polygons, and thus Method 2 seems to be more appropriate than Method 1
inthisempirical study.

Using Figure 14, we now examine how the population distribution affects the
distribution of convenience stores. In this figure, we notice that the 20-29 age group
shows the largest values of zp, among the three groups for all r, and they are larger than
the critical value at a significance level of 1%. This suggests that the distribution of the
20-29 age group is the most influential on the distribution of convenience stores among
the three groups. Compared with this group, the 30-39 age group is less influential
though they also show large values of zp,. The distribution of the 10-19 age group, on
the other hand, does not seem to affect the distribution of convenience stores. The null
hypothesis that the convenience stores are distributed independent of the distribution of
the 10-19 age group cannot be rejected at a significance level of 5% for al r.

We finally discuss the size of market areas of the convenience stores. Regarding
the 20-29 and 30-39 age groups, zp, values are larger than the critical value at a
significance level of 5% at r from 500 to 700 meters. This suggests that the convenience
stores are located so that the population of 20-39 years living within aradius of 500-700
meters from the stores is large enough. Though this result is not inconsistent with the
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hypothetical size of market areas (radius around 500 meters), it suggests that convenience
stores may have larger market areas.

6. CONCLUDING DISCUSSION

In this paper, we have proposed statistical methods for analyzing the distribution of
gpatial objects in relation to a surface. Using these methods, we can analyze the
distribution of points, convex polygons, and line segments which are most frequently
used in GISin relation to a surface.

Choice of analyzing methods depends, of course, on the type of spatial objects.
The object type, however, can be converted if necessary, as shown in the empirical
study. If the distribution of pointsislocally determined by a surface, the points-surface
method is applicable. Conversely, if the distribution has global relationship with the
surface, it might be better to convert the points into polygons through a transformation
method such as the buffering operation and apply the polygons-surface method. If we
wish to analyze a polygon distribution in relation to a surface by the points-surface
method, we can replace the polygons by their representative points such as the gravity
centers. For further details of the transformation methods, see Bohman-Carter (1994),
for instance.

The GIS data treated as a surface includes not only the continuous variables but
the discrete and binary variables distributed continuously over a region. Hence, by
regarding polygons as the surface of a binary variable, we can analyze the distribution of
convex polygonsin relation to the distribution of polygons of different shapes using the
polygons-surface method. Similarly, we can treat the relationship between the
distribution of line segments and the distribution of incongruent polygons.

The methods proposed in this paper, however, have some limitations. We finally
discuss them with possible modifications. First, the proposed methods are not applicable
in a strict sense to the distribution of spatial objects interacting with each other, either
repulsively (spatial avoidance) or attractively (spatial clustering). If we analyze the
distribution of such objects, the obtained results may be erroneous to some extent
because the null hypothesis considered in the statistical tests implicitly assume the
independency of spatial objects. For instance, the null hypothesis may be rejected if
gpatial objects tend to gather though they are distributed independent of the surface. In
usual empirical analyses, however, we do not know the spatial interaction among spatial
objects a priori. Hence, if it seems that the objects are strongly interacting with each
other, we should lower the significance level to avoid the error of the test. Second, the
methods proposed in Sections 3 and 4 do not work for the distribution of spatial objects

19



which are not allowed to intersect with each other. This is because the inhibition of
intersection involves a strong interaction among spatial objects, which violates the
independency assumption mentioned above. A new method to treat this case should be
developed in further researches.
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APPENDIX 1. THE MEASURE OF ALL POSITIONS OF A CONVEX
POLYGON CONTAINING TWO POINTS

Suppose a convex polygon S of area a and perimeter |. Let m(S; x, t) be the
measure of all convex polygons congruent to Sthat contain the two points located at x
and t, respectively. This measure can easily be calculated if Shasasmple shape. When S
isacircle of radiusr, the measure is directly given by the multiplication of 2rtand the
area of intersection of two circles of radiusr centered at x and t.

mSx.t)
D4nr arccos@—@ MX thar—x—tf (x-t/<2r),
H (x—t[>2r). (A1)

For arectangle of sidesb, ¢ (b < c), we have

m(S x,t)
E 2rbe - 4(b+c)x —t|+ 2x — tf’ (x-t|<b),
O 4cylx -t —b® —4cx —t| - 2b* + 4b(:arcsinxbt (b<|x-t|<c),
0 _

_ %u:\/\x —tf —b? +4by|x 1 -c* -2(b? +c* +[x - tf) (A2
|:| D b D (C<‘X_t‘S\/b2+CZ),
D+4bcEarcsi n — arccos
i X1 x—td
% 0 (€b2+cz <\x—t\).

Substituting b=c=d into equation (A 2) yields the measure of a square of side d:

m(S x,t)
o 2rmd? - 8djx — t] + 2x — tf (x-t<d), (A3
= %dwx tf —d? +2(rr-2)d* - 2x - tf* - arccosxc_I (d <x—t/<~ 2d),
g 0 (v2d <x -t))

For other convex polygons, a procedure of calculating m(S; x, t) is given by Santalo
(1976).

APPENDIX 2. CALCULATION OF E[Zp3] AND V[Zpg]

The expectation of Zps isgiven asfollows. Using equation (19), we have



E[Z,,] = lim OW{anDSO F(x)dx + (2mm+ |0|)f0}
(A 4)
. a Ez H
_a/léo 02 +O / a Daao LDSO dX+B’ZnO%E+ OE\/ [I
# E% “HiaH
Substituting
a/llmooaa_ a};OmOOE\/EE O’ (A 5)
we obtain
_a
E[Z.,] = @ fis f (x)dx. (A 6)

The variance of Zp3 isderived in the following way. From equations (13) and (23),
we have

01
V[ZP3] - a/lziomoﬁg,[tuso x0S,

E[g(x)a(t){ f(x)f(t) - 2f,f(x) + 17 }dxat

10 27 O 2] . (A7)
ey B[ R aofo} =
Substituting equation (24), we rewrite equation (A 7) as
V[Z,)]= lim & ! F(x)f (t)oxd
2] = fim B (orfay + )+ g} s o MSX DT 1O bt
(A 8)

21 f2

10 g 21 2 [
-= -2 -2 l
nSZn(a0+a)+Iol XD%f(x)de " 5,(a)+ n 62(a)a

where
) s A
aogzn(ao + a) + IOI EIXDSO f(X)dX a_2 t0S Ix0S E[g ]f dth ( 9)
and
L O 21 f
R e ORI M
In the limit a/ag - 0, & (a) reducesto
0
Jim 5(a -a,';OmOH WDI s e foos, ELO0)GO)] F(x dxdté
= o fe 1008 fim 2 (e[ . (A1)
=0



Similarly,

U fO
. o= __,H 21
a/I!\OnJ062(a) - a/lallonjogr; t0s, Ix0s, E[g(x)g(t)]dxdt % %n(ao + a) +1 B E
= lim SE (x)dx 0y . (A12)
alag -0 612 J-Xﬂ%g H

=0
Substituting these equations into equation (A 8), we obtain

V[z,)]= lim 3 !
(25 _a/eltm(?%az{Zn(ao+a)+lol
10 on
nEIZn(a0+a)+IOI X0S,
1 101

f
- 2nra0a2.[tmso x0S, m(S;X’t)f(X)f(t)dth _Ega: XS, f(X)dX%

} J;DSO xO0S, m(S; X't) f (X) f (t)dth

fO
f(x)dxg O . (A 13)
0H

APPENDIX 3. CALCULATION OF Z, 1, E[Z1], AND V[Z, 1]

Suppose arectangle R of sides b, | (b < |) and define the coordinate system whose
axes are parallel to the sides of R and origin is located at the lower-left vertex of R.
(Figure A 1). Let us denote the lower side of RasL.

Figure A 1. Therectangle R and the coordinate system.
We consider the integral of f(x) over R given by
1
1(x) = HIme f (x)dx (A 14)
and theintegral of f(x) on L,
1
1, (x) = TIxmL f(x)dx. (A 15)
In the limit b 0, equation (A 14) reduces to equation (A 15) as below.
lim =(X)=lim

[ J’(') £ (x)dxdy (A 16)

Applying equation (A 16) to equation (53), we obtain

ol



1

21 = I b-0 nbl ZIXDS 1

(A 17)
- H ZJ-XDLi fl( )dX
The expectation and the variance of Z, 1 are calculated as follows.
E[Z,] =1limE[Z,)]
1 (A 18)

=] {"fmso f(x)ax + |0|f0]

Similarly,
V[Z,]=1imV[Z,]

= i) s s TR 10010 21,10+ ]t A

10« f 2
HE D[ [« fax —aofo}

19)
In the limit b0, @ reducesto
. (b))
”mm(R,zx,t):%lm 2 (x-t|<1), (A 20)
-0 b g9 0 (I<x-t)

where ¢(b) is given by
¢(b) = 4l\|x -t - b? — 4l|x —t| - 2b® + 4bl arcsin

o (A 21)

Applying aTaylor series expansion to ¢(b), we obtain
#(6)= $(0) + ¢ (0)p+¢" (0)p" +O[p)

_2(|—|X—t|) 2 4 3
S b* +0(0°)

(A 22)

Hence,

(A 23)



Using equations (A 19), (A 20) and (A 23), we obtain

1

V[ZLl] = mﬁﬂ% x0S,

m (%t £(x) f(t) = 2, F (x) + 17 }dxalt

10 7 o Az

2
_ﬁ Dmom — N E [J’xms) f(X)dX —a fo]

where
—[x =1
x =t/ <),
m(x,t)=0 [x -t (-1 )

H o (I <[x = t|).

(A 25)
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FigureA 1

The distribution of point objects and a surface. The gray shade indicates the
surface value.

Three relationships between the distribution of point objects and a surface.
(a) Points are distributed where the surface values are large, (b) points are
distributed where the surface values are small, (c) points are distributed
independent of the surface value.

The distribution of convex polygons intersecting & and a surface. The gray
shade indicates the surface value.

Thecircles Cp and Cp'.

Theregions &, S and .

The function fo(X) in § and Ss.

Transformation of § into §;'. (&) The polygon S, (b) the polygon S
generated through the transformation.

The distribution of polygons and the surface function fy(x).

The distributions of line segments, their replacing rectangles, and a surface.
The gray shade indicates the surface value.

The distribution of convenience stores and the standardized population
distribution g(x). White dots indicate the convenience stores, and the circles
centered at the stores are 500 meters buffer regions. Broken line indicates
the study region. (&) The 10-19 age group, (b) the 20-29 age group, (c) the
30-39 age group.

The standardized probability density distributions of Zp;. The distribution
of 20-29 age group is used as f(x). The radius of the circles is (a) 100
meters, (b) 300 meters, (c) 500 meters. The gray shade indicates the
standard normal distribution.

Theregion &' where circles are distributed.

The results of the analysis given by Methods 1 and 1'. Solid lines and
dotted lines indicate the values of zp; given by Method 1 and Method 1,
respectively. Critical values of zp; a significance levels of 1% and 5 % are
shown as zy 01 and Z o5, respectively.

The results of the analysis given by Methods 2 and 2'. Solid lines and
dotted lines indicate the values of zp, given by Method 2 and Method 2/,
respectively. Critical values of zp, at significance levels of 1% and 5 % are
shown as zy 01 and Z o5, respectively.

The rectangle R and the coordinate system.
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